-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune_vit2spn.py
256 lines (211 loc) · 9.33 KB
/
finetune_vit2spn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import os
import random
import torch
import torch.nn as nn
from torchvision import transforms
from torch.utils.data import DataLoader, Subset
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import roc_auc_score, roc_curve, auc, classification_report, confusion_matrix, ConfusionMatrixDisplay
from sklearn.utils.class_weight import compute_class_weight
from tqdm import tqdm
import matplotlib.pyplot as plt
import numpy as np
import warnings
from medmnist import INFO
from medmnist.dataset import OCTMNIST
# Suppress warnings
warnings.filterwarnings("ignore")
# Configuration
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3,4,5"
batch_size = 16
fine_tune_epochs = 50
k_folds = 10
subset_fraction = 0.05129415 #0.04103532 #0.03077649 #0.01538825 #0.01025883 #0.00512942
random_seed = 42
test_subset_size = 500
# Load Pretrained Backbone
from ssp_vit2spn import ViTBackbone
# Data Augmentation
transform = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(degrees=10),
transforms.ColorJitter(brightness=0.2, contrast=0.2),
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Lambda(lambda x: x.repeat(3, 1, 1)),
transforms.Normalize(mean=[.5, .5, .5], std=[.5, .5, .5])
])
# Load OCTMNIST Dataset
info = INFO["octmnist"]
num_classes = len(info["label"])
labeled_dataset = OCTMNIST(split="train", transform=transform, download=True)
test_dataset = OCTMNIST(split="test", transform=transform, download=True)
# Select a Subset of the Dataset
def get_subset(dataset, fraction, seed):
random.seed(seed)
total_samples = len(dataset)
subset_size = int(total_samples * fraction)
indices = random.sample(range(total_samples), subset_size)
return Subset(dataset, indices)
# Apply Subsetting
small_labeled_dataset = get_subset(labeled_dataset, subset_fraction, random_seed)
test_subset_indices = random.sample(range(len(test_dataset)), test_subset_size)
test_subset = Subset(test_dataset, test_subset_indices)
test_loader = DataLoader(test_subset, batch_size=batch_size, shuffle=False)
# Model Definition
class FineTunedModel(nn.Module):
def __init__(self, num_classes):
super().__init__()
self.backbone = ViTBackbone()
self.fc = nn.Sequential(
nn.Linear(768, 128),
nn.BatchNorm1d(128),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(128, num_classes)
)
def forward(self, x):
features = self.backbone(x)
return self.fc(features)
# Training Function
def fine_tune_model(model, train_loader, val_loader, optimizer, criterion, scheduler, epochs=fine_tune_epochs, patience=3):
best_val_loss = float("inf")
patience_counter = 0
best_state_dict = None
for epoch in range(epochs):
model.train()
running_loss = 0.0
for x, labels in tqdm(train_loader, desc=f"Epoch {epoch + 1}/{epochs}"):
x, labels = x.to(device), labels.to(device)
labels = labels.squeeze().long()
optimizer.zero_grad()
outputs = model(x)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
train_loss = running_loss / len(train_loader)
# Validation
val_loss = 0.0
model.eval()
with torch.no_grad():
for x, labels in val_loader:
x, labels = x.to(device), labels.to(device)
labels = labels.squeeze().long()
outputs = model(x)
loss = criterion(outputs, labels)
val_loss += loss.item()
val_loss /= len(val_loader)
scheduler.step(val_loss)
print(f"Epoch {epoch + 1}/{epochs}: Train Loss = {train_loss:.4f}, Val Loss = {val_loss:.4f}")
if val_loss < best_val_loss:
best_val_loss = val_loss
best_state_dict = model.state_dict()
patience_counter = 0
else:
patience_counter += 1
if patience_counter >= patience:
break
model.load_state_dict(best_state_dict)
# AUC Computation and Curve Plotting
def compute_auc_and_plot_fold(model, val_loader, classes, fold):
val_labels, val_probs = [], []
model.eval()
with torch.no_grad():
for x, labels in val_loader:
x, labels = x.to(device), labels.to(device)
labels = labels.squeeze().long()
outputs = model(x)
val_probs.extend(torch.softmax(outputs, dim=1).cpu().numpy())
val_labels.extend(labels.cpu().numpy())
val_probs = np.array(val_probs)
val_labels = np.array(val_labels)
one_hot_labels = np.eye(len(classes))[val_labels]
fpr, tpr, roc_auc = {}, {}, {}
for i in range(len(classes)):
fpr[i], tpr[i], _ = roc_curve(one_hot_labels[:, i], val_probs[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
mean_auc = np.mean(list(roc_auc.values()))
return fpr, tpr, roc_auc, mean_auc, val_labels, val_probs
# Evaluation on Test Data (with Confusion Matrix Visualization)
def evaluate_test_data(model, test_loader, classes):
test_labels, test_probs = [], []
model.eval()
with torch.no_grad():
for x, labels in test_loader:
x, labels = x.to(device), labels.to(device)
labels = labels.squeeze().long()
outputs = model(x)
test_probs.extend(torch.softmax(outputs, dim=1).cpu().numpy())
test_labels.extend(labels.cpu().numpy())
test_probs = np.array(test_probs)
test_labels = np.array(test_labels)
one_hot_labels = np.eye(len(classes))[test_labels]
fpr, tpr, roc_auc = {}, {}, {}
for i in range(len(classes)):
fpr[i], tpr[i], _ = roc_curve(one_hot_labels[:, i], test_probs[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
#mean_auc = np.mean(list(roc_auc.values()))
#print(f"\nTest Data Mean AUC: {mean_auc:.4f}")
# Compute confusion matrix
predictions = np.argmax(test_probs, axis=1)
cm = confusion_matrix(test_labels, predictions)
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=[str(i) for i in range(num_classes)])
disp.plot(cmap=plt.cm.Blues)
plt.title(f"Confusion Matrix")
plt.savefig("./ssp_retinaloct_midl2025/vit2spn/result/confusion_matrix.png")
plt.show()
# Classification report
report = classification_report(test_labels, predictions, target_names=[str(i) for i in range(num_classes)])
print(f"\nClassification Report:\n{report}")
# Stratified K-Fold Cross-Validation with Best Model Selection
skf = StratifiedKFold(n_splits=k_folds, shuffle=True, random_state=random_seed)
fpr_dict, tpr_dict, auc_dict = {}, {}, {}
all_fprs, all_tprs, all_auc = [], [], []
best_auc = 0.0
best_model = None
for fold, (train_idx, val_idx) in enumerate(skf.split(range(len(small_labeled_dataset)),
[small_labeled_dataset.dataset.labels[i] for i in small_labeled_dataset.indices])):
print(f"\nFold {fold + 1}/{k_folds}")
train_subset = Subset(small_labeled_dataset, train_idx)
val_subset = Subset(small_labeled_dataset, val_idx)
train_loader = DataLoader(train_subset, batch_size=batch_size, shuffle=True, drop_last=True)
val_loader = DataLoader(val_subset, batch_size=batch_size, shuffle=False)
train_targets = np.array([small_labeled_dataset.dataset.labels[i] for i in train_idx]).squeeze()
class_weights = compute_class_weight("balanced", classes=np.unique(train_targets), y=train_targets)
criterion = nn.CrossEntropyLoss(weight=torch.tensor(class_weights, dtype=torch.float).to(device))
model = FineTunedModel(num_classes=num_classes).to(device)
model.backbone.load_state_dict(torch.load("./ssp_retinaloct_midl2025/vit2spn/octmnist_vit2spn_model.pth"))
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4, weight_decay=1e-4)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=3, verbose=True)
fine_tune_model(model, train_loader, val_loader, optimizer, criterion, scheduler)
fpr_dict[fold], tpr_dict[fold], auc_dict[fold], mean_auc, val_labels, val_probs = compute_auc_and_plot_fold(
model, val_loader, [str(i) for i in range(num_classes)], fold + 1
)
# Store fold-specific AUC and comparison for best fold model
all_fprs.append(fpr_dict[fold])
all_tprs.append(tpr_dict[fold])
all_auc.append(mean_auc)
if mean_auc > best_auc:
best_auc = mean_auc
best_model = model
# Evaluate on Test Data using the best model
print("\nEvaluating on Test Data using the Best Model:")
evaluate_test_data(best_model, test_loader, [str(i) for i in range(num_classes)])
# Print average AUC for all folds
print(f"\nAverage AUC across folds: {np.mean(all_auc):.4f}")
# Final AUC and ROC plots across folds
plt.figure(figsize=(10, 8))
for fold in range(k_folds):
plt.plot(fpr_dict[fold][0], tpr_dict[fold][0], lw=2, label=f"Fold {fold + 1} (AUC = {auc_dict[fold][0]:.2f})")
plt.plot([0, 1], [0, 1], "k--", lw=2, label="Random")
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title(f"ROC Curve - All Folds (Mean AUC = {np.mean(all_auc):.3f})")
plt.legend(loc="lower right")
plt.grid()
plt.savefig("./ssp_retinaloct_midl2025/vit2spn/result/roc_curve_all_folds.png")
plt.show()