-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheshop_anomaly_kpi_basic.py
389 lines (301 loc) · 14.9 KB
/
eshop_anomaly_kpi_basic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
import pandas as pd
import numpy as np
import os
import sqlalchemy
import time
import math
import tqdm
from collections import Counter
import plotly.express as pe
from dotenv import load_dotenv
# fix this inputs if needed
# import plotly.io as pio
# pio.renderers.default='notebook'
import datetime
from datetime import date
import copy
from dython import nominal
import argparse
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from sqlalchemy import engine
from config import *
from kpi_config import *
from dateutil import rrule
from datetime import timedelta
try:
load_dotenv(DOTENV_PATH)
except:
load_dotenv('.env')
import warnings
warnings.filterwarnings("ignore")
#-----------------------------------
parser = argparse.ArgumentParser()
# parser.add_argument('--account_id', type=int, required=True)
# parser.add_argument('--slice', type=int, required=True)
# parser.add_argument('--beg_date', type=str, required=True)
# parser.add_argument('--end_date', type=str, required=True)
# parser.add_argument('--lq', type=int, required=True)
# parser.add_argument('--rq', type=int, required=True)
# parser.add_argument('--to_sql', type=int, required=False, default=0)
args = parser.parse_args()
# ACCOUNT_ID = args.account_id
# SLICE = args.slice
# BEG_DATE = args.beg_date
# END_DATE = args.end_date
# LQ = args.lq
# RQ = args.rq
TIME = int(time.time())
END_DATE = datetime.datetime.now().date()
BEG_DATE = END_DATE - timedelta(days=7)
LQ = LQ/100
RQ = RQ/100
anomaly_border = 0
print('Arguments accepted',
'\n Acc_id: ', ACCOUNT_ID,
'\n B_date:', BEG_DATE,
'\n E_date:', END_DATE,
'\n lq: ', LQ,
'\n rq: ', RQ,
'\n anomaly_border: ', anomaly_border,
'\nCurrent time: ', TIME)
#-----------------------------------
host = os.getenv('EVENTS_DB_HOST')
db = os.getenv('EVENTS_DB_NAME')
user = os.getenv('EVENTS_DB_USER')
password = os.getenv('EVENTS_DB_PASSWORD')
port = os.getenv('EVENTS_DB_PORT')
connection_str = 'postgresql://{0}:{1}@{2}:{3}/{4}'.format(user, password, host, port, db)
engine = sqlalchemy.create_engine(connection_str, execution_options={"stream_results":True})
query_sessions = f'''
select *
from data.customer_profile_sessions cps
left join(
select id as beh_id,guest_id, customer_profile_id from data.customer_profile_behaviour cpb
where cpb.account_id = {ACCOUNT_ID}
) cpb on cpb.beh_id = cps.customer_profile_behaviour_id
where cps.account_id = {ACCOUNT_ID} and cps.garbage_session = False and cps.session_start >= '{BEG_DATE}' and cps.session_start < '{END_DATE}'
'''
sessions = pd.read_sql_query(query_sessions, engine)
query_sessions1 = f'''
select *
from data.customer_profile_session_journey_statuses
where account_id = {ACCOUNT_ID}
and created >= '{BEG_DATE - timedelta(days=5)}' and created < '{END_DATE + timedelta(days=5)}'
'''
sessions1 = pd.read_sql_query(query_sessions1, engine)
query_sessions2 = f'''
select *
from data.customer_journey_statuses
'''
statuses = pd.read_sql_query(query_sessions2, engine)
query_sessions3 = f'''
select *
from data.sessions_campaign_dict
'''
campaigns = pd.read_sql_query(query_sessions3, engine)
query_sessions4 = f'''
select *
from data.sessions_source_dict
'''
sources = pd.read_sql_query(query_sessions4, engine)
query_sessions5 = f'''
select *
from data.sessions_medium_dict
'''
mediums = pd.read_sql_query(query_sessions5, engine)
# timestamp
# print('Step 1...')
# TIME_END = time.time()
# print('Time spent: ', TIME_END - TIME)
sessions['duration'] = sessions['session_end'] - sessions['session_start']
sessions['duration'] = sessions['duration'].apply(lambda x: x.total_seconds())
statuses = statuses.rename(columns={'id': 'journey_status_id'})
sources = sources.rename(columns={'id': 'source_id'})
mediums = mediums.rename(columns={'id': 'medium_id'})
campaigns = campaigns.rename(columns={'id': 'campaign_id'})
sessions1 = sessions1.merge(statuses[['journey_status_id', 'status_name']], how='left', on='journey_status_id')
sessions = sessions.merge(sources, how='left', on='source_id').merge(mediums, how='left', on='medium_id').merge(campaigns, how='left', on='campaign_id')
sessions = sessions.merge(sessions1[['id', 'journey_status_id', 'created', 'status_name']], how='inner', on='id')
# chanls = ['Organic Search', 'Social', 'Direct', 'Referral', 'Email', 'Paid Search']
chanls = sessions.channel.unique().tolist()
#-----------------------------------
# timestamp
# print('Step 2...')
# TIME_END = time.time()
# print('Time spent: ', TIME_END - TIME)
sess = sessions[['source', 'medium', 'campaign', 'ipcountry',
'device_type', 'add_to_basket_count', 'duration', 'status_name']]
if sess.empty:
print('Error. No sessions')
smcid = [['source_id', 'medium_id', 'campaign_id', 'ipcountry', 'device_type']]
kpiv = ['add_to_basket_count', 'duration', 'status_name']
tops_table = pd.DataFrame()
sliced_sessions_data = sess[['source', 'medium', 'campaign', 'ipcountry', 'device_type', 'add_to_basket_count',
'duration', 'status_name']]
combs = sliced_sessions_data.groupby(['source', 'medium', 'campaign', 'ipcountry',
'device_type']).size().reset_index().rename(columns={0: 'length'})
combs['bounce_rate'] = 0
combs['conversion_rate'] = 0
combs['med_duration'] = 0
rown = 0
for index, row in combs.iterrows():
cuts = sliced_sessions_data[(sliced_sessions_data.source == row.source) &
(sliced_sessions_data.medium == row.medium) &
(sliced_sessions_data.campaign == row.campaign) &
(sliced_sessions_data.ipcountry == row.ipcountry) &
(sliced_sessions_data.device_type == row.device_type)]
bounc = len(cuts[cuts.status_name == 'Bounce'])
atb = len(cuts[cuts.add_to_basket_count >= 1])
le = row['length']
if bounc != 0:
try:
combs.iloc[rown, combs.columns.get_loc('bounce_rate')] = bounc/le
except ZeroDivisionError:
combs.iloc[rown, combs.columns.get_loc('bounce_rate')] = 0
else:
combs.iloc[rown, combs.columns.get_loc('bounce_rate')] = 0
if atb != 0:
try:
combs.iloc[rown, combs.columns.get_loc('conversion_rate')] = atb/le
except ZeroDivisionError:
combs.iloc[rown, combs.columns.get_loc('conversion_rate')] = 0
else:
combs.iloc[rown, combs.columns.get_loc('conversion_rate')] = 0
if cuts.duration.sum() != 0:
try:
combs.iloc[rown, combs.columns.get_loc('med_duration')] = cuts.duration.median()
except ZeroDivisionError:
combs.iloc[rown, combs.columns.get_loc('med_duration')] = 0
else:
combs.iloc[rown, combs.columns.get_loc('med_duration')] = 0
rown += 1
combs = combs[combs.length >= 10].reset_index(drop=True)
norms = sliced_sessions_data.groupby(['source']).size().reset_index().rename(columns={0: 'length'})
norms = norms[norms['source'].isin(combs.source.unique().tolist())].reset_index(drop=True)
norms['bounce_rate'] = 0
norms['conversion_rate'] = 0
norms['med_duration'] = 0
rown = 0
for index, row in norms.iterrows():
cuts = sliced_sessions_data[(sliced_sessions_data.source == row.source)]
bounc = len(cuts[cuts.status_name == 'Bounce'])
atb = len(cuts[cuts.add_to_basket_count >= 1])
le = row['length']
if bounc != 0:
try:
norms.iloc[rown, norms.columns.get_loc('bounce_rate')] = bounc/le
except ZeroDivisionError:
norms.iloc[rown, norms.columns.get_loc('bounce_rate')] = 0
else:
norms.iloc[rown, norms.columns.get_loc('bounce_rate')] = 0
if atb != 0:
try:
norms.iloc[rown, norms.columns.get_loc('conversion_rate')] = atb/le
except ZeroDivisionError:
norms.iloc[rown, norms.columns.get_loc('conversion_rate')] = 0
else:
norms.iloc[rown, norms.columns.get_loc('conversion_rate')] = 0
if cuts.duration.sum() != 0:
try:
norms.iloc[rown, norms.columns.get_loc('med_duration')] = cuts.duration.median()
except ZeroDivisionError:
norms.iloc[rown, norms.columns.get_loc('med_duration')] = 0
else:
norms.iloc[rown, norms.columns.get_loc('med_duration')] = 0
rown += 1
kpi = ['bounce_rate', 'conversion_rate', 'med_duration']
tops = pd.DataFrame()
for sou in norms.source:
category_slice = combs[combs.source == sou]
norm = norms[norms.source == sou]
if (len(category_slice[category_slice.length > 10]) >= 3):
len_sllice = category_slice[category_slice.length > 10]
for i in range(0, len(kpi)):
val = kpi[i]
if val == 'bounce_rate':
cut = len_sllice.sort_values(val, ascending=True).head(5)
cut2 = len_sllice.sort_values(val, ascending=False).head(5)
else:
cut = len_sllice.sort_values(val, ascending=False).head(5)
cut2 = len_sllice.sort_values(val, ascending=True).head(5)
cut['is_best'] = 1
cut2['is_best'] = 0
cut['target_kpi'] = val
cut2['target_kpi'] = val
cut['kpi_value'] = cut[val]
cut2['kpi_value'] = cut2[val]
cut['kpi_norma'] = norm[val].iloc[0]
cut2['kpi_norma'] = norm[val].iloc[0]
cut['kpi_delta'] = (cut[val] - norm[val].iloc[0]) / norm[val].iloc[0] * 100
cut2['kpi_delta'] = (cut2[val] - norm[val].iloc[0]) / norm[val].iloc[0] * 100
tops = tops.append(cut)
tops = tops.append(cut2)
# print(len(tops))
# try:
# if len(tops) != 0:
# tops = tops.reset_index(drop=True)
# tops['first_session'] = sess['session_start'].min()
# tops['last_session'] = sess['session_start'].max()
# tops['period_begin'] = sess['period_begin'].max()
# tops['period_end'] = sess['period_end'].max()
# tops['overall_begin'] = BEG_DATE
# tops['overall_end'] = END_DATE
# except:
# print('__getitem__ problem has occured. currently working on it \n Results should be pretty normal though \n')
# tops = tops.reset_index(drop=True)
tops_table = tops_table.append(tops)
tops_table = tops_table.reset_index(drop=True)
# tops_table.to_csv('tops_kpi_{0}_{1}_{2}.csv'.format(ACCOUNT_ID, BEG_DATE, END_DATE))
tops_table.to_csv('tops_kpi.csv')
with open('cache_log.txt', 'w', encoding='utf-8') as f:
f.write('Results with specs: \n')
f.write(
'Acc_id: {0} \n B_date: {1} \n E_date: {2} \n lq: {3} \n rq: {4} \n anomaly_border: {5} \n\n'.format(
ACCOUNT_ID,
BEG_DATE,
END_DATE,
LQ,
RQ,
anomaly_border))
lenq = len(sess)
f.write('Sessions overall: {0} \n\n'.format(lenq))
if tops_table.empty:
f.write('Insufficient data for MCID candidates evaluation')
else:
f.write('Best performing traffic \n\n')
for sou in tops_table.source.unique():
session_slice = sess[sess.source == sou]
category_slice = tops_table[(tops_table.source == sou) & (tops_table.is_best == 1)]
norm = norms[norms.source == sou]
f.write('- {0} \n'.format(sou))
f.write('- {0} % sessions with this source \n\n'.format(round(len(session_slice) / lenq * 100), 2))
for kpi_value in kpi:
category_slice_kpi = category_slice[category_slice.target_kpi == kpi_value]
f.write('-- top by {0} \n\n'.format(kpi_value))
for index, row in category_slice_kpi.iterrows():
f.write('-- had {0}% traffic coming from {1}, {2} coming from {3}, {4} \n'.format(round(row['length'] / len(session_slice) * 100, 2), row.medium, row.campaign, row.ipcountry, row.device_type))
f.write('--- bounce_rate ({2}) is {0} % diff from norm which is {1} \n'.format(round((row['bounce_rate'] - norm['bounce_rate'].iloc[0]) / norm['bounce_rate'].iloc[0] * 100, 2), round(norm['bounce_rate'].iloc[0], 2), round(row['bounce_rate'], 2)))
f.write('--- med_duration ({2}) is {0} % diff from norm which is {1} \n'.format(round((row['med_duration'] - norm['med_duration'].iloc[0]) / norm['med_duration'].iloc[0] * 100, 2), round(norm['med_duration'].iloc[0], 2), round(row['med_duration'], 2)))
f.write('--- conversion_rate ({2}) is {0} % diff from norm which is {1} \n'.format(round((row['conversion_rate'] - norm['conversion_rate'].iloc[0]) / norm['conversion_rate'].iloc[0] * 100, 2), round(norm['conversion_rate'].iloc[0], 2), round(row['conversion_rate'], 2)))
f.write('\n')
f.write('Worst performing traffic \n\n')
for sou in tops_table.source.unique():
session_slice = sess[sess.source == sou]
category_slice = tops_table[(tops_table.source == sou) & (tops_table.is_best == 0)]
norm = norms[norms.source == sou]
f.write('- {0} \n'.format(sou))
f.write('- {0} % sessions with this source \n\n'.format(round(len(session_slice) / lenq * 100), 2))
for kpi_value in kpi:
category_slice_kpi = category_slice[category_slice.target_kpi == kpi_value]
f.write('-- top by {0} \n\n'.format(kpi_value))
for index, row in category_slice_kpi.iterrows():
f.write('-- had {0}% traffic coming from {1}, {2} coming from {3}, {4} \n'.format(round(row['length'] / len(session_slice) * 100, 2), row.medium, row.campaign, row.ipcountry, row.device_type, row.target_kpi))
f.write('--- bounce_rate ({2}) is {0} % diff from norm which is {1} \n'.format(round((row['bounce_rate'] - norm['bounce_rate'].iloc[0]) / norm['bounce_rate'].iloc[0] * 100, 2), round(norm['bounce_rate'].iloc[0], 2), round(row['bounce_rate'], 2)))
f.write('--- med_duration ({2}) is {0} % diff from norm which is {1} \n'.format(round((row['med_duration'] - norm['med_duration'].iloc[0]) / norm['med_duration'].iloc[0] * 100, 2), round(norm['med_duration'].iloc[0], 2), round(row['med_duration'], 2)))
f.write('--- conversion_rate ({2}) is {0} % diff from norm which is {1} \n'.format(round((row['conversion_rate'] - norm['conversion_rate'].iloc[0]) / norm['conversion_rate'].iloc[0] * 100, 2), round(norm['conversion_rate'].iloc[0], 2), round(row['conversion_rate'], 2)))
f.write('\n')
# timestamp
print('Core procession is finished...')
TIME_END = time.time()
print('Time spent: ', TIME_END - TIME)
# f.write('It was detected that for {0} sessions from {1} to {2} which originate from {3} and have the following MCID: {4}, {5}, {6}, {7}, the {8} was {9} and was equal to normal value in this period {10}.'.format(int(row['length']), row.period_begin, row.period_end, row.source, row.medium, row.campaign, row.ipcountry, row.device_family, row.target_kpi, round(row.kpi_value, 2), round(row.kpi_norma, 2))