Skip to content

Commit afbe5a7

Browse files
committed
gans
1 parent ecae1ec commit afbe5a7

18 files changed

+86458
-48058
lines changed

IMDB-keras/IMDB_In_Keras.ipynb

+195-16
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@
99
},
1010
{
1111
"cell_type": "code",
12-
"execution_count": null,
12+
"execution_count": 14,
1313
"metadata": {},
1414
"outputs": [],
1515
"source": [
@@ -36,9 +36,18 @@
3636
},
3737
{
3838
"cell_type": "code",
39-
"execution_count": null,
39+
"execution_count": 15,
4040
"metadata": {},
41-
"outputs": [],
41+
"outputs": [
42+
{
43+
"name": "stdout",
44+
"output_type": "stream",
45+
"text": [
46+
"(25000,)\n",
47+
"(25000,)\n"
48+
]
49+
}
50+
],
4251
"source": [
4352
"# Loading the data (it's preloaded in Keras)\n",
4453
"(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=1000)\n",
@@ -59,9 +68,18 @@
5968
},
6069
{
6170
"cell_type": "code",
62-
"execution_count": null,
71+
"execution_count": 17,
6372
"metadata": {},
64-
"outputs": [],
73+
"outputs": [
74+
{
75+
"name": "stdout",
76+
"output_type": "stream",
77+
"text": [
78+
"[1, 14, 22, 16, 43, 530, 973, 2, 2, 65, 458, 2, 66, 2, 4, 173, 36, 256, 5, 25, 100, 43, 838, 112, 50, 670, 2, 9, 35, 480, 284, 5, 150, 4, 172, 112, 167, 2, 336, 385, 39, 4, 172, 2, 2, 17, 546, 38, 13, 447, 4, 192, 50, 16, 6, 147, 2, 19, 14, 22, 4, 2, 2, 469, 4, 22, 71, 87, 12, 16, 43, 530, 38, 76, 15, 13, 2, 4, 22, 17, 515, 17, 12, 16, 626, 18, 2, 5, 62, 386, 12, 8, 316, 8, 106, 5, 4, 2, 2, 16, 480, 66, 2, 33, 4, 130, 12, 16, 38, 619, 5, 25, 124, 51, 36, 135, 48, 25, 2, 33, 6, 22, 12, 215, 28, 77, 52, 5, 14, 407, 16, 82, 2, 8, 4, 107, 117, 2, 15, 256, 4, 2, 7, 2, 5, 723, 36, 71, 43, 530, 476, 26, 400, 317, 46, 7, 4, 2, 2, 13, 104, 88, 4, 381, 15, 297, 98, 32, 2, 56, 26, 141, 6, 194, 2, 18, 4, 226, 22, 21, 134, 476, 26, 480, 5, 144, 30, 2, 18, 51, 36, 28, 224, 92, 25, 104, 4, 226, 65, 16, 38, 2, 88, 12, 16, 283, 5, 16, 2, 113, 103, 32, 15, 16, 2, 19, 178, 32]\n",
79+
"1\n"
80+
]
81+
}
82+
],
6583
"source": [
6684
"print(x_train[0])\n",
6785
"print(y_train[0])"
@@ -80,6 +98,62 @@
8098
"execution_count": null,
8199
"metadata": {},
82100
"outputs": [],
101+
"source": []
102+
},
103+
{
104+
"cell_type": "code",
105+
"execution_count": 18,
106+
"metadata": {},
107+
"outputs": [
108+
{
109+
"name": "stdout",
110+
"output_type": "stream",
111+
"text": [
112+
"[0. 1. 1. 0. 1. 1. 1. 1. 1. 1. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 0.\n",
113+
" 0. 1. 1. 0. 1. 0. 1. 0. 1. 1. 0. 1. 1. 0. 1. 1. 0. 0. 0. 1. 0. 0. 1. 0.\n",
114+
" 1. 0. 1. 1. 1. 0. 0. 0. 1. 0. 0. 0. 0. 0. 1. 0. 0. 1. 1. 0. 0. 0. 0. 1.\n",
115+
" 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 1. 0. 0. 0. 0. 1. 1. 0. 0. 0. 1. 0. 0. 0.\n",
116+
" 0. 0. 1. 0. 1. 0. 0. 1. 1. 0. 1. 1. 0. 0. 0. 0. 1. 1. 0. 0. 0. 1. 0. 0.\n",
117+
" 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 1. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 1. 0. 0.\n",
118+
" 1. 0. 0. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.\n",
119+
" 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
120+
" 1. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.\n",
121+
" 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
122+
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n",
123+
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0. 0. 0.\n",
124+
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
125+
" 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
126+
" 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
127+
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n",
128+
" 0. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 1.\n",
129+
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
130+
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.\n",
131+
" 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n",
132+
" 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
133+
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
134+
" 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n",
135+
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
136+
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
137+
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0.\n",
138+
" 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
139+
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n",
140+
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
141+
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
142+
" 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
143+
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
144+
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
145+
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
146+
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n",
147+
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
148+
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
149+
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
150+
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
151+
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
152+
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
153+
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n"
154+
]
155+
}
156+
],
83157
"source": [
84158
"# One-hot encoding the output into vector mode, each of length 1000\n",
85159
"tokenizer = Tokenizer(num_words=1000)\n",
@@ -97,9 +171,20 @@
97171
},
98172
{
99173
"cell_type": "code",
100-
"execution_count": null,
101-
"metadata": {},
102-
"outputs": [],
174+
"execution_count": 19,
175+
"metadata": {
176+
"scrolled": true
177+
},
178+
"outputs": [
179+
{
180+
"name": "stdout",
181+
"output_type": "stream",
182+
"text": [
183+
"(25000, 2)\n",
184+
"(25000, 2)\n"
185+
]
186+
}
187+
],
103188
"source": [
104189
"# One-hot encoding the output\n",
105190
"num_classes = 2\n",
@@ -119,13 +204,59 @@
119204
},
120205
{
121206
"cell_type": "code",
122-
"execution_count": null,
207+
"execution_count": 21,
123208
"metadata": {},
124-
"outputs": [],
209+
"outputs": [
210+
{
211+
"name": "stdout",
212+
"output_type": "stream",
213+
"text": [
214+
"1000\n"
215+
]
216+
}
217+
],
218+
"source": [
219+
"print (x_train.shape[1])"
220+
]
221+
},
222+
{
223+
"cell_type": "code",
224+
"execution_count": 29,
225+
"metadata": {},
226+
"outputs": [
227+
{
228+
"name": "stdout",
229+
"output_type": "stream",
230+
"text": [
231+
"_________________________________________________________________\n",
232+
"Layer (type) Output Shape Param # \n",
233+
"=================================================================\n",
234+
"dense_9 (Dense) (None, 512) 512512 \n",
235+
"_________________________________________________________________\n",
236+
"dropout_2 (Dropout) (None, 512) 0 \n",
237+
"_________________________________________________________________\n",
238+
"dense_10 (Dense) (None, 2) 1026 \n",
239+
"=================================================================\n",
240+
"Total params: 513,538\n",
241+
"Trainable params: 513,538\n",
242+
"Non-trainable params: 0\n",
243+
"_________________________________________________________________\n"
244+
]
245+
}
246+
],
125247
"source": [
126248
"# TODO: Build the model architecture\n",
127249
"\n",
128-
"# TODO: Compile the model using a loss function and an optimizer.\n"
250+
"model = Sequential()\n",
251+
"model.add(Dense(512, activation='relu', input_dim=1000))\n",
252+
"model.add(Dropout(0.5))\n",
253+
"model.add(Dense(num_classes, activation='softmax'))\n",
254+
"model.summary()\n",
255+
"\n",
256+
"# Compiling the model using categorical_crossentropy loss, and rmsprop optimizer.\n",
257+
"model.compile(loss='categorical_crossentropy',\n",
258+
" optimizer='rmsprop',\n",
259+
" metrics=['accuracy'])\n"
129260
]
130261
},
131262
{
@@ -138,11 +269,44 @@
138269
},
139270
{
140271
"cell_type": "code",
141-
"execution_count": null,
272+
"execution_count": 31,
142273
"metadata": {},
143-
"outputs": [],
274+
"outputs": [
275+
{
276+
"name": "stdout",
277+
"output_type": "stream",
278+
"text": [
279+
"Train on 25000 samples, validate on 25000 samples\n",
280+
"Epoch 1/10\n",
281+
" - 5s - loss: 0.4017 - acc: 0.8248 - val_loss: 0.3512 - val_acc: 0.8527\n",
282+
"Epoch 2/10\n",
283+
" - 5s - loss: 0.3429 - acc: 0.8610 - val_loss: 0.3430 - val_acc: 0.8600\n",
284+
"Epoch 3/10\n",
285+
" - 5s - loss: 0.3235 - acc: 0.8730 - val_loss: 0.3494 - val_acc: 0.8586\n",
286+
"Epoch 4/10\n",
287+
" - 5s - loss: 0.3204 - acc: 0.8779 - val_loss: 0.4351 - val_acc: 0.8349\n",
288+
"Epoch 5/10\n",
289+
" - 5s - loss: 0.3131 - acc: 0.8816 - val_loss: 0.3816 - val_acc: 0.8612\n",
290+
"Epoch 6/10\n",
291+
" - 5s - loss: 0.3031 - acc: 0.8895 - val_loss: 0.4305 - val_acc: 0.8450\n",
292+
"Epoch 7/10\n",
293+
" - 5s - loss: 0.2942 - acc: 0.8944 - val_loss: 0.4123 - val_acc: 0.8509\n",
294+
"Epoch 8/10\n",
295+
" - 5s - loss: 0.2842 - acc: 0.9013 - val_loss: 0.4251 - val_acc: 0.8597\n",
296+
"Epoch 9/10\n",
297+
" - 5s - loss: 0.2718 - acc: 0.9058 - val_loss: 0.4589 - val_acc: 0.8558\n",
298+
"Epoch 10/10\n",
299+
" - 5s - loss: 0.2639 - acc: 0.9130 - val_loss: 0.4578 - val_acc: 0.8548\n"
300+
]
301+
}
302+
],
144303
"source": [
145-
"# TODO: Run the model. Feel free to experiment with different batch sizes and number of epochs."
304+
"# TODO: Run the model. Feel free to experiment with different batch sizes and number of epochs.\n",
305+
"hist = model.fit(x_train, y_train,\n",
306+
" batch_size=32,\n",
307+
" epochs=10,\n",
308+
" validation_data=(x_test, y_test), \n",
309+
" verbose=2)"
146310
]
147311
},
148312
{
@@ -155,13 +319,28 @@
155319
},
156320
{
157321
"cell_type": "code",
158-
"execution_count": null,
322+
"execution_count": 32,
159323
"metadata": {},
160-
"outputs": [],
324+
"outputs": [
325+
{
326+
"name": "stdout",
327+
"output_type": "stream",
328+
"text": [
329+
"Accuracy: 0.8548\n"
330+
]
331+
}
332+
],
161333
"source": [
162334
"score = model.evaluate(x_test, y_test, verbose=0)\n",
163335
"print(\"Accuracy: \", score[1])"
164336
]
337+
},
338+
{
339+
"cell_type": "code",
340+
"execution_count": null,
341+
"metadata": {},
342+
"outputs": [],
343+
"source": []
165344
}
166345
],
167346
"metadata": {

IMDB-keras/IMDB_In_Keras_Solutions.ipynb

+1-1
Original file line numberDiff line numberDiff line change
@@ -73,7 +73,7 @@
7373
"name": "python",
7474
"nbconvert_exporter": "python",
7575
"pygments_lexer": "ipython3",
76-
"version": "3.6.1"
76+
"version": "3.6.6"
7777
}
7878
},
7979
"nbformat": 4,

0 commit comments

Comments
 (0)