-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquora_bert.py
45 lines (36 loc) · 1.34 KB
/
quora_bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import pandas as pd
import sklearn
from simpletransformers.classification import ClassificationModel
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
from tqdm.autonotebook import tqdm
tqdm.pandas()
train_path = './train.csv'
test_path = './test.csv'
train_df = pd.read_csv(train_path)
test_df = pd.read_csv(test_path)
print('Train shape : ', train_df.shape)
print('Test shape : ', test_df.shape)
train_data = train_df[['question_text', 'target']]
train_data.columns = ['text', 'labels']
train_data, test_data = train_test_split(train_data, test_size=0.1, random_state=2020)
model_args = {
"num_train_epochs": 5,
"fp16": False,
"overwrite_output_dir": True,
"save_steps": 2000,
"train_batch_size": 16,
"eval_batch_size": 8,
"use_early_stopping": True,
"early_stopping_delta": 0.01,
"early_stopping_metric": "acc",
"early_stopping_metric_minimize": False,
"early_stopping_patience": 5,
"evaluate_during_training_steps": 1000,
"learning_rate": 1e-4,
"wandb_project": "bert-quora"
}
model = ClassificationModel('bert', 'bert-base-cased', args=model_args, cuda_device=1)
model.train_model(train_data, eval_df=test_data, acc=sklearn.metrics.f1_score)
result, model_outputs, wrong_predictions = model.eval_model(test_data, acc=sklearn.metrics.f1_score)
print(result)