-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPBR.py
560 lines (389 loc) · 14.4 KB
/
PBR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
import numpy as np
import random
import math
import networkx as nx
J = []
M = []
Pji = {}
W = {}
T = 0
class Rectangle:
def __init__(self, i, j, s, x, pji):
self.start_time = s
self.pji = pji
self.height = x
self.end_time = s+pji
self.machine = i
self.job = j
self._baseWindows = None
def __str__(self):
return f"[task:{self.job},machine:{self.machine},line:[{self.start_time},{self.start_time}+{self.pji}],hight:{self.height},base windows:{self._baseWindows}]"
@property
def baseWindows(self):
return self._baseWindows
@baseWindows.setter
def baseWindows(self,new_baseWindows):
self._baseWindows = new_baseWindows
class Group:
def __init__(self, base_window,machine,job):
self.base_window = base_window
self.machine = machine
self.job = job
self.members = set()
def __str__(self):
if self.base_window != 0:
return f"[小组u的机器为:{self.machine},基本窗口为:{self.base_window}]"
if self.base_window == 0:
return f"[小组u的机器为:{self.machine},作业:{self.job}]"
def __eq__(self, other):
if isinstance(other, Group):
return (
self.base_window == other.base_window and
self.machine == other.machine and
self.job == other.job
)
return False
def __hash__(self):
return hash((self.base_window, self.machine, self.job))
def add_member(self, rectangle):
self.members.add(rectangle)
def display_members(self):
print("该小组中的矩形包括:")
for member in self.members:
print(member)
def print_obj(obj_set):
for obj in obj_set:
print(obj)
def generate_c(b):
while True:
lnc = random.uniform(0, math.log(1 + b))
c = math.exp(lnc)
if c >=1 and c <(1+b):
break
return c
def generate_grid_points(c,b,T):
grid_points = []
k = 1
while True:
point = c * (1 + b) ** k
if point > T*1000:
break
grid_points.append(point)
k += 1
return grid_points
def generate_shifting_parameter(Pji):
SPji = Pji
for row_key,row_value in Pji.items():
for col_key,col_value in row_value.items():
tji = random.uniform(0,col_value)
SPji[row_key][col_key] = tji
return SPji
def generate_rectangle(x_matrix):
rectangle_obj_set = set()
for i in range(x_matrix.shape[0]):
for j in range(x_matrix.shape[1]):
for s in range(x_matrix.shape[2]):
if x_matrix[i,j,s] > 0:
rectangle_obj = Rectangle(i,j,s,x_matrix[i,j,s],Pji[j][i])
rectangle_obj_set.add(rectangle_obj)
return rectangle_obj_set
def find_grid_point(rectangle,grid_points,SPji):
rectangle_start_time = rectangle.start_time
rectangle_end_time = rectangle.end_time
rectangle_job = rectangle.job
rectangle_machine = rectangle.machine
rectangle.baseWindows = 0
for i, _ in enumerate(grid_points):
if rectangle_start_time*10 <= grid_points[i] < rectangle_start_time*10 + SPji[rectangle_job][rectangle_machine]*10 <= grid_points[i+1]:
rectangle.baseWindows = i+1+1
def generate_group(rectangles):
group_set = set()
group_set_rec = set()
for i in M:
for rectangle in rectangles:
if rectangle.machine == i and rectangle.baseWindows != 0:
is_exist = 0
for group in group_set_rec:
if group.machine == i and group.base_window == rectangle.baseWindows:
is_exist = 1
group.add_member(rectangle)
if is_exist == 0:
group_set.add(Group(rectangle.baseWindows,i,0))
group = Group(rectangle.baseWindows, i, 0)
group.add_member(rectangle)
group_set_rec.add(group)
if rectangle.machine == i and rectangle.baseWindows == 0:
is_exist = 0
for group in group_set_rec:
if group.machine == i and group.job == rectangle.job:
is_exist = 1
group.add_member(rectangle)
if is_exist == 0:
group_set.add(Group(0,i,rectangle.job))
group = Group(0,i,rectangle.job)
group.add_member(rectangle)
group_set_rec.add(group)
return group_set,group_set_rec
def f_yuj(group,job,group_set_rec):
yuj = 0
for group_rec in group_set_rec:
if group.machine == group_rec.machine and group.base_window == group_rec.base_window and group.job == group_rec.job :
for rectangle in group_rec.members:
if rectangle.job == job:
yuj += rectangle.height
return yuj
def is_equal_rectangle(rectangleA,rectangleB):
if rectangleA.job == rectangleB.job and rectangleA.machine == rectangleB.machine and rectangleA.start_time == rectangleB.start_time and rectangleA.height == rectangleB.height and rectangleA.end_time == rectangleB.end_time:
return True
else:
return False
def not_in_rectangle_set(job,rectangle_set):
flag = True
max_rectangle = None
for rectangle in rectangle_set:
if rectangle.job == job:
flag = False
max_rectangle = rectangle
return flag, max_rectangle
def find_job_in_group(job,group_set):
group_list_result = []
for group in group_set:
flag,_ = not_in_rectangle_set(job,group.members)
if flag == False:
group_list_result.append(group)
return group_list_result
def reomve_add_rectangle_set(remove_rectangle,add_rectangle,rectangle_set):
for target_rectangle in rectangle_set:
if is_equal_rectangle(target_rectangle,remove_rectangle):
rectangle_set.pop(target_rectangle)
rectangle_set.add(add_rectangle)
break
def generate_grouop_Rijs(group_set_rec):
group_set_Rijs = set()
for group in group_set_rec:
max_rectangle_map = {}
for rectangle in group.members:
max_rectangle = max_rectangle_map.get(rectangle.job)
if max_rectangle == None or (max_rectangle != None and rectangle.height > max_rectangle.height):
max_rectangle_map[rectangle.job] = rectangle
max_group = Group(group.base_window,group.machine,group.job)
for job, rectangle in max_rectangle_map.items():
max_group.add_member(rectangle)
group_set_Rijs.add(max_group)
return group_set_Rijs
def calssfly_job(group_set_Rijs):
single_job = []
mult_job = []
for job in J:
group_list_result = find_job_in_group(job,group_set_Rijs)
if len(group_list_result) == 1:
single_job.append(job)
else:
mult_job.append(job)
return single_job,mult_job
def get_group_list_Rijs_index(target_group,group_list_Rijs):
for i,group in enumerate(group_list_Rijs):
if group == target_group:
return i
def define_group(mult_job,group_list_Rijs):
group_node_list = []
for job in mult_job:
group_list_result = find_job_in_group(job,group_list_Rijs)
for group in group_list_result:
if group not in group_node_list:
group_node_list.append(get_group_list_Rijs_index(group,group_list_Rijs))
return group_node_list
def sort_by_yuj(job,group_list,group_set_Rijs):
n = len(group_list)
for i in range(n - 1):
for j in range(0,n-i-1):
if f_yuj(group_list[j],job,group_set_Rijs) < f_yuj(group_list[j+1],job,group_set_Rijs):
temp = group_list[j]
group_list[j] = group_list[j+1]
group_list[j+1] = temp
return group_list
def g_single_job(single_job,group_set_Rijs):
g_single_job_map = {}
for job in single_job:
group_list_result = find_job_in_group(job,group_set_Rijs)
g_single_job_map[job] = group_list_result[0]
return g_single_job_map
def pair_edges(Hcand):
Hsplit = nx.Graph()
for u in Hcand.nodes():
edges = list(Hcand.edges(u))
random.shuffle(edges)
for i in range(0, len(edges), 2):
if i + 1 < len(edges):
job1 = edges[i][1]
job2 = edges[i+1][1]
Hsplit.add_node(u)
Hsplit.add_edge(u, job1)
Hsplit.add_edge(u, job2)
return Hsplit
def break_into_segments(Hsplit):
segments = []
for component in nx.connected_components(Hsplit):
segments.append(component)
return segments
def rounding_along_segments(segments, Hcand):
sigma = {}
for segment in segments:
for job in segment:
if Hcand.has_node(job):
groups = list(Hcand.adj[job])
chosen_group = random.choice(groups)
sigma[job] = chosen_group
return sigma
def find_Rijs_job_in_group(job,g):
group = g[job]
Rijs = None
for xijs in group.members:
if xijs.job == job:
Rijs = xijs
return Rijs
def is_domainate(job,g):
group = g[job]
yuj = 0
for Rijs in group.members:
if Rijs.job == job:
yuj = Rijs.height
if yuj > 1/2:
return True
else:
return False
def compute_cj(job,g,a,SPji):
if is_domainate(job,g):
cj = (1 + a) * find_Rijs_job_in_group(job,g).start_time + SPji[job][g[job].machine] + 0.2 * find_Rijs_job_in_group(job,g).pji
else:
cj = (1 + a) * find_Rijs_job_in_group(job, g).start_time + SPji[job][g[job].machine]
return cj
def generate_jobs_in_machine(g):
jobs_in_machine_map = {}
for machine in M:
Rijs_list = []
for job , group in g.items():
if group.machine == machine:
Rijs_list.append(find_Rijs_job_in_group(job,g))
jobs_in_machine_map[machine] = Rijs_list
return jobs_in_machine_map
def sort_ac_Rijs_list_by_cj(Rijs_list,g,a,SPji):
n = len(Rijs_list)
for i in range(n):
for j in range(0, n - i - 1):
if(compute_cj(Rijs_list[j].job,g,a,SPji) > compute_cj(Rijs_list[j + 1].job,g,a,SPji)):
Rijs_list[j], Rijs_list[j+1] = Rijs_list[j+1], Rijs_list[j]
def sort_ac_job_in_machine_map_by_cj(jobs_in_machine_map,g,a,SPji):
for machine in M:
sort_ac_Rijs_list_by_cj(jobs_in_machine_map[machine],g,a,SPji)
return jobs_in_machine_map
def round(x_matrix,JL,ML):
xijs = []
a = 0.3
b = 12.1
c = generate_c(b)
grid_points = generate_grid_points(c,b,T)
rectangles = generate_rectangle(x_matrix)
SPji = generate_shifting_parameter(Pji)
for rectangle in rectangles:
find_grid_point(rectangle,grid_points,SPji)
group_set,group_set_rec = generate_group(rectangles)
group_set_Rijs = generate_grouop_Rijs(group_set_rec)
group_list_Rijs = list(group_set_Rijs)
single_job , mult_job = calssfly_job(group_set_Rijs)
g_single_job_map=g_single_job(single_job,group_set_Rijs)
group_node_list = define_group(mult_job, group_list_Rijs)
Hcand = nx.MultiGraph()
Hmark = nx.MultiGraph()
for u in group_node_list:
Hcand.add_node(u)
for j in mult_job:
Hcand.add_node(j)
for job in mult_job:
group_list_result = find_job_in_group(job,group_set_Rijs)
sort_group_list_result = sort_by_yuj(job, group_list_result, group_set_Rijs)
Hcand.add_edge(sort_group_list_result[0], job)
Hcand.add_edge(sort_group_list_result[1], job)
Hsplit = pair_edges(Hcand)
segmenrts = break_into_segments(Hsplit)
sigma = rounding_along_segments(segmenrts,Hcand)
g_temp = {**g_single_job_map, **sigma}
g = {}
for job in J:
g[job] = g_temp[job]
group = g[1]
cj = compute_cj(1,g,a,SPji)
jobs_in_machine_map = generate_jobs_in_machine(g)
jobs_in_machine_map_ac = sort_ac_job_in_machine_map_by_cj(jobs_in_machine_map,g,a,SPji)
weight_sum_time = 0
licp_list = []
licp_sum = 0
time_sum = 0
lcp_up = 0
lcp = 0
for machine in M:
Rijs_list = jobs_in_machine_map_ac[machine]
start_time = 0
licp = 0
for Rijs in Rijs_list:
weight_sum_time += W[Rijs.job] * (start_time + Rijs.pji)
start_time += Rijs.pji
licp += JL[Rijs.job]
time_sum += Rijs.pji
licp_sum += licp
licp_list.append(licp)
licp_avg = licp_sum / len(M)
lm_sum = 0
for i, element in enumerate(licp_list):
lm = element / ML[i+1]
lm_sum += lm
for l in licp_list:
lcp_up += pow(l - licp_avg, 2)
lcp = lcp_up / len(M)
print(f'rounding licp_avg {licp_avg}')
return weight_sum_time,lcp,time_sum,lm_sum
def avg_process_time():
weight_time_bb_sum = 0
weight_time_access_sum = 0
for i in range(30):
M0, J0, w0, p0,JL,ML = MyData.data()
M1, J1, w1, p1, x_matrix, T1, optimal_value1,solved_time1 = LPold.process_LP(M0, J0, w0, p0)
global_LB = bb.bb_optimization(M1, J1, w1, p1)
weight_time_bb_sum += global_LB
are_all_integers = np.all((x_matrix > 0.99) | (x_matrix == 0))
if are_all_integers:
weight_time1 = optimal_value1
licp_list = []
time_sum_round = 0
licp_avg = 0
licp_sum = 0
lcp_up = 0
for i in M0:
licp = 0
for j in J0:
for t in range(T1+1):
if x_matrix[i,j,t] > 0.99:
time_sum_round += p0[j][i]
licp += JL[j]
licp_list.append(licp)
licp_sum += licp
licp_avg = licp_sum / len(M0)
lm_sum_rounding = 0
for i, element in enumerate(licp_list):
lm = element / ML[i+1]
lm_sum_rounding += lm
for l in licp_list:
lcp_up += pow(l - licp_avg,2)
lcp_round = lcp_up / len(M0)
print(licp_list)
print(f'rounding licp_avg {licp_avg}')
else:
global J, M, Pji, W, T
J = J1
M = M1
Pji = p1
W = w1
T = T1
weight_time1,lcp_round,time_sum_round,lm_sum_rounding = round(x_matrix,JL,ML)
if __name__ == '__main__':
avg_process_time()