This repository has been archived by the owner on Apr 14, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecognizer.py
176 lines (141 loc) · 7.05 KB
/
recognizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import cv2
import numpy as np
import torch
from easyocr import Reader
from transformers import BertTokenizer, BertForSequenceClassification
# Класс Recognizer предназначен для распознавания и классификации текста из изображений.
class Recognizer:
def __init__(self, model_path='bert-base-multilingual-cased'):
self.net = cv2.dnn.readNet('assets/frozen_east_text_detection.pb')
self.model = BertForSequenceClassification.from_pretrained(model_path)
self.tokenizer = BertTokenizer.from_pretrained(model_path)
self.reader = Reader(['ru'])
self.model.eval()
def image_to_string(self, image):
results = self.reader.readtext(image, detail=0)
return ' '.join(results)
def classify_text(self, text):
with torch.no_grad():
inputs = self.tokenizer(text, return_tensors='pt', truncation=True, max_length=512)
outputs = self.model(**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
return text, torch.argmax(probs).item()
def recognize(self, image_path):
image = cv2.imread(image_path)
orig_with_boxes, ROIs = self.preprocess(image)
results = []
if not ROIs:
print("No ROIs found.")
return orig_with_boxes, []
for roi in ROIs:
text = self.image_to_string(roi)
_, class_label = self.classify_text(text)
results.append((text, class_label))
return orig_with_boxes, results
def enhance_contrast(self, image):
alpha = 1.5
beta = 0
return cv2.convertScaleAbs(image, alpha=alpha, beta=beta)
def preprocess(self, image):
orig = image.copy()
image = self.enhance_contrast(image)
(H, W) = image.shape[:2]
rW, rH = W / float(320), H / float(320)
resized_image = cv2.resize(image, (320, int(H * (320 / W))))
blob = cv2.dnn.blobFromImage(resized_image, 1.0, (320, 320),
(123.68, 116.78, 103.94), swapRB=True, crop=False)
self.net.setInput(blob)
scores, geometry = self.net.forward(["feature_fusion/Conv_7/Sigmoid", "feature_fusion/concat_3"])
rects, confidences = self.decode_predictions(scores, geometry)
boxes = self.non_max_suppression(np.array(rects), confidences)
ROIs = [self.extract_ROI(orig, box, rW, rH) for box in boxes]
orig_with_boxes = self.draw_boxes(orig, boxes, rW, rH)
return orig_with_boxes, ROIs
def extract_ROI(self, orig_image, box_coords, rW, rH):
# Расчет координат начала и конца области интереса (ROI)
startX, startY, endX, endY = box_coords
startX = int(startX * rW)
startY = int(startY * rH)
endX = int(endX * rW)
endY = int(endY * rH)
# Извлечение и возврат ROI из исходного изображения
return orig_image[startY:endY, startX:endX]
def draw_boxes(self, orig_image, boxes_coords, rW, rH):
# Рисование прямоугольников вокруг обнаруженных текстовых областей на исходном изображении
for (startX, startY, endX, endY) in boxes_coords:
startX = int(startX * rW)
startY = int(startY * rH)
endX = int(endX * rW)
endY = int(endY * rH)
cv2.rectangle(orig_image,
(startX, startY),
(endX, endY),
(0, 255, 0), 2)
# Возврат исходного изображения с нарисованными прямоугольниками
return orig_image
def decode_predictions(self, scores, geometry, min_confidence=0.5):
# Инициализация списка прямоугольников и уверенностей
(numRows, numCols) = scores.shape[2:4]
rects = []
confidences = []
# Цикл по строкам выходных данных сети
for y in range(0, numRows):
scoresData = scores[0, 0, y]
xData0 = geometry[0, 0, y]
xData1 = geometry[0, 1, y]
xData2 = geometry[0, 2, y]
xData3 = geometry[0, 3, y]
anglesData = geometry[0, 4, y]
# Цикл по столбцам выходных данных сети
for x in range(0, numCols):
# Пропуск низких уверенностей
if scoresData[x] < min_confidence:
continue
# Расчет смещения и угла для каждого прямоугольника
(offsetX, offsetY) = (x * 4.0, y * 4.0)
angle = anglesData[x]
cos = np.cos(angle)
sin = np.sin(angle)
# Расчет размеров и координат прямоугольника
h = xData0[x] + xData2[x]
w = xData1[x] + xData3[x]
# Расчет координат конца прямоугольника
endX = int(offsetX + (cos * xData1[x]) + (sin * xData2[x]))
endY = int(offsetY - (sin * xData1[x]) + (cos * xData2[x]))
startX = int(endX - w)
startY = int(endY - h)
# Добавление прямоугольника и уверенности в списки
rects.append((startX, startY, endX, endY))
confidences.append(scoresData[x])
# Возврат списка прямоугольников и уверенностей за пределами циклов
return rects, confidences
def non_max_suppression(self, boxes, probs=None, overlapThresh=0.3):
if len(boxes) == 0:
return []
if boxes.dtype.kind == "i":
boxes = boxes.astype("float")
pick = []
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
area = (x2 - x1 + 1) * (y2 - y1 + 1)
idxs = np.argsort(probs)
while len(idxs) > 0:
last = len(idxs) - 1
i = idxs[last]
pick.append(i)
xx1 = np.maximum(x1[i], x1[idxs[:last]])
yy1 = np.maximum(y1[i], y1[idxs[:last]])
xx2 = np.minimum(x2[i], x2[idxs[:last]])
yy2 = np.minimum(y2[i], y2[idxs[:last]])
w = np.maximum(0, xx2 - xx1 + 1)
h = np.maximum(0, yy2 - yy1 + 1)
overlap = (w * h) / area[idxs[:last]]
idxs = np.delete(idxs, np.concatenate(([last], np.where(overlap > overlapThresh)[0])))
return boxes[pick].astype("int")
recognizer = Recognizer()
orig_with_boxes, results = recognizer.recognize(
'D:\\DevDrive\\localzet-dev\\hacks-ai-dpr\\assets\\subm_example\\IMG_20240329_095208778~2.jpg')
for i, (text, class_label) in enumerate(results):
print(f'ROI {i}: Class {class_label} - {text}')