-
Notifications
You must be signed in to change notification settings - Fork 333
/
Copy pathconsole.c
239 lines (217 loc) · 6.76 KB
/
console.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
/*
* This file is part of the libopencm3 project.
*
* Copyright (C) 2013 Chuck McManis <cmcmanis@mcmanis.com>
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* USART example (alternate console)
*
* This version then adds in interrupts, which is really handy for
* the receive function as it is impossible to predict when someone
* might type a character, further you can create a "character based
* reset" capability if you choose to.
*/
#include <stdint.h>
#include <setjmp.h>
#include <libopencm3/stm32/gpio.h>
#include <libopencm3/stm32/rcc.h>
#include <libopencm3/stm32/usart.h>
#include <libopencm3/cm3/nvic.h>
#include <libopencm3/stm32/iwdg.h>
#include <libopencm3/cm3/scb.h>
#include <libopencm3/cm3/cortex.h>
#include "console.h"
/*
* Some definitions of our console "functions" attached to the
* USART.
*
* These define sort of the minimum "library" of functions which
* we can use on a serial port.
*/
#define CONSOLE_UART USART1
/* This is a ring buffer to holding characters as they are typed
* it maintains both the place to put the next character received
* from the UART, and the place where the last character was
* read by the program. See the README file for a discussion of
* the failure semantics.
*/
#define RECV_BUF_SIZE 128 /* Arbitrary buffer size */
char recv_buf[RECV_BUF_SIZE];
volatile int recv_ndx_nxt; /* Next place to store */
volatile int recv_ndx_cur; /* Next place to read */
/* For interrupt handling we add a new function which is called
* when recieve interrupts happen. The name (usart1_isr) is created
* by the irq.json file in libopencm3 calling this interrupt for
* USART2 'usart2', adding the suffix '_isr', and then weakly binding
* it to the 'do nothing' interrupt function in vec.c.
*
* By defining it in this file the linker will override that weak
* binding and instead bind it here, but you have to get the name
* right or it won't work. And you'll wonder where your interrupts
* are going.
*/
void usart1_isr(void)
{
uint32_t reg;
int i;
do {
reg = USART_SR(CONSOLE_UART);
if (reg & USART_SR_RXNE) {
recv_buf[recv_ndx_nxt] = USART_DR(CONSOLE_UART);
#ifdef RESET_ON_CTRLC
/*
* This bit of code will jump to the ResetHandler if you
* hit ^C
*/
if (recv_buf[recv_ndx_nxt] == '\003') {
scb_reset_system();
return; /* never actually reached */
}
#endif
/* Check for "overrun" */
i = (recv_ndx_nxt + 1) % RECV_BUF_SIZE;
if (i != recv_ndx_cur) {
recv_ndx_nxt = i;
}
}
/* can read back-to-back interrupts */
} while ((reg & USART_SR_RXNE) != 0);
}
/*
* console_putc(char c)
*
* Send the character 'c' to the USART, wait for the USART
* transmit buffer to be empty first.
*/
void console_putc(char c)
{
uint32_t reg;
do {
reg = USART_SR(CONSOLE_UART);
} while ((reg & USART_SR_TXE) == 0);
USART_DR(CONSOLE_UART) = (uint16_t) c & 0xff;
}
/*
* char = console_getc(int wait)
*
* Check the console for a character. If the wait flag is
* non-zero. Continue checking until a character is received
* otherwise return 0 if called and no character was available.
*
* The implementation is a bit different however, now it looks
* in the ring buffer to see if a character has arrived.
*/
char console_getc(int wait)
{
char c = 0;
while ((wait != 0) && (recv_ndx_cur == recv_ndx_nxt));
if (recv_ndx_cur != recv_ndx_nxt) {
c = recv_buf[recv_ndx_cur];
recv_ndx_cur = (recv_ndx_cur + 1) % RECV_BUF_SIZE;
}
return c;
}
/*
* void console_puts(char *s)
*
* Send a string to the console, one character at a time, return
* after the last character, as indicated by a NUL character, is
* reached.
*/
void console_puts(char *s)
{
while (*s != '\000') {
console_putc(*s);
/* Add in a carraige return, after sending line feed */
if (*s == '\n') {
console_putc('\r');
}
s++;
}
}
/*
* int console_gets(char *s, int len)
*
* Wait for a string to be entered on the console, limited
* support for editing characters (back space and delete)
* end when a <CR> character is received.
*/
int console_gets(char *s, int len)
{
char *t = s;
char c;
*t = '\000';
/* read until a <CR> is received */
while ((c = console_getc(1)) != '\r') {
if ((c == '\010') || (c == '\177')) {
if (t > s) {
/* send ^H ^H to erase previous character */
console_puts("\010 \010");
t--;
}
} else {
*t = c;
console_putc(c);
if ((t - s) < len) {
t++;
}
}
/* update end of string with NUL */
*t = '\000';
}
return t - s;
}
/*
* Set up the GPIO subsystem with an "Alternate Function"
* on some of the pins, in this case connected to a
* USART.
*/
void console_setup(void)
{
/* MUST enable the GPIO clock in ADDITION to the USART clock */
rcc_periph_clock_enable(RCC_GPIOA);
/* This example uses PD9 and PD10 for Tx and Rx respectively
* but other pins are available for this role on USART1 (our chosen
* USART) as well, we are using them because they are connected over
* jumpers to the programmer.
*/
gpio_mode_setup(GPIOA, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO9 | GPIO10);
/* Actual Alternate function number (in this case 7) is part
* depenedent, check the data sheet for the right number to
* use.
*/
gpio_set_af(GPIOA, GPIO_AF7, GPIO9 | GPIO10);
/* This then enables the clock to the USART1 peripheral which is
* attached inside the chip to the APB1 bus. Different peripherals
* attach to different buses, and even some UARTS are attached to
* APB1 and some to APB2, again the data sheet is useful here.
* We are using the rcc_periph_clock_enable function that knows which
* peripheral is on which clock bus and sets things up accordingly.
*/
rcc_periph_clock_enable(RCC_USART1);
/* Set up USART/UART parameters using the libopencm3 helper functions */
usart_set_baudrate(CONSOLE_UART, 115200);
usart_set_databits(CONSOLE_UART, 8);
usart_set_stopbits(CONSOLE_UART, USART_STOPBITS_1);
usart_set_mode(CONSOLE_UART, USART_MODE_TX_RX);
usart_set_parity(CONSOLE_UART, USART_PARITY_NONE);
usart_set_flow_control(CONSOLE_UART, USART_FLOWCONTROL_NONE);
usart_enable(CONSOLE_UART);
/* Enable interrupts from the USART */
nvic_enable_irq(NVIC_USART1_IRQ);
/* Specifically enable recieve interrupts */
usart_enable_rx_interrupt(CONSOLE_UART);
}