-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquantreggen.py
91 lines (73 loc) · 2.47 KB
/
quantreggen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#!/usr/bin/env python3
## author: Leo Liberti
## purpose: generation of random instances of quantile regression
## date: 220201
############################ imports #############################
import sys
import os
import math
import numpy as np
import random
######################### global params ##########################
myZero = 1e-8
myInf = 1e30
printConstraintMatrix = False
defaultQuantile = 0.2
density = 0.8
########################### functions ############################
############################## main ##############################
if len(sys.argv) < 3:
exit('syntax is [./quantreg.py records fields [quantile] ]')
m = int(sys.argv[1])
n = int(sys.argv[2])
tau = defaultQuantile
if len(sys.argv) >= 4:
tau = float(sys.argv[3])
if m < 1:
exit('quantreg needs at least one record')
if n < 2:
exit('quantreg needs at least two fields')
if tau > 1 or tau < 0:
exit('quantile must be in [0,1]')
# output basename
outn = "quantreg-" + str(m) + "_" + str(n)
# data table
D = np.random.uniform(-1,1, (m,n)) # in [-1,1]
# make this sparse
for i in range(m):
for j in range(n):
if random.uniform(0,1) > density:
D[i,j] = 0.0
# dependent column index: last
bidx = n-1
if printConstraintMatrix:
Id = np.eye(m)
A = np.hstack((D[:,0:bidx], D[:,bidx+1:n], Id, -Id))
b = D[:,bidx]
# output to AMPL .dat
dat = outn + ".dat"
with open(dat, 'w') as out:
print("# AMPL .dat file encoding quantile regression instance", file=out)
print("# m={0:d} n={1:d} tau={2:.3f} density={3:.2f}".format(m,n,tau,density), file=out)
print("param m := {0:d};".format(m), file=out)
print("param n := {0:d};".format(n), file=out)
print("param bidx := {0:d};".format(bidx+1), file=out)
print("param tau := {0:f};".format(tau), file=out)
print("param D :=", file=out)
for i in range(m):
for j in range(n):
if abs(D[i,j]) > myZero:
print(" {0:d} {1:d} {2:f}".format(i+1,j+1, D[i,j]), file=out)
print(";", file=out)
if printConstraintMatrix:
print("param A :=", file=out)
for i in range(m):
for j in range(n-1+2*m):
if abs(A[i,j]) > myZero:
print(" {0:d} {1:d} {2:f}".format(i+1,j+1,A[i,j]),file=out)
print(";", file=out)
print("param b :=", file=out)
for i in range(m):
if abs(b[i]) > myZero:
print(" {0:d} {1:d} {2:f}".format(i+1,b[i]),file=out)
print(";", file=out)