-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrainer.py
406 lines (375 loc) · 19 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
import argparse
import gc
import math
import os
import pathlib
import random
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F # noqa
import torch.optim as optim
from sklearn.preprocessing import StandardScaler
from torch.cuda.amp import autocast, GradScaler
from torch.utils.data import DataLoader
from data_utils import VRDDataset, VRDInferenceDataset, collate_fn, inference_collate_fn
from evaluation_utils import evaluate_recall_at_k
from feature_utils import extract_pairwise_features
from file_utils import load_object_from_file
from monte_carlo import MonteCarlo
from transformer import Transformer
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='vrd')
parser.add_argument('--max_k', type=int, default=100)
parser.add_argument('--d_model', type=int, default=256)
parser.add_argument('--nhead', type=int, default=4)
parser.add_argument('--dim_feedforward', type=int, default=512)
parser.add_argument('--dropout', type=float, default=0.1)
parser.add_argument('--activation', type=str, default='relu')
parser.add_argument('--num_encoder_layers', type=int, default=4)
parser.add_argument('--num_decoder_layers', type=int, default=2)
parser.add_argument('--relation_embedding_dim', type=int, default=32)
parser.add_argument('--dnn_dropout', type=float, default=0.2)
parser.add_argument('--num_negatives', type=int, default=4)
parser.add_argument('--eval_interval', type=int, default=1)
parser.add_argument('--rl_interval', type=int, default=2)
parser.add_argument('--num_playouts', type=int, default=16)
parser.add_argument('--alpha', type=float, default=0.5)
parser.add_argument('--gamma', type=float, default=0.1)
parser.add_argument('--batch_size', type=int, default=512)
parser.add_argument('--lr', type=float, default=3e-4)
parser.add_argument('--weight_decay', type=float, default=1e-4)
parser.add_argument('--num_epochs', type=int, default=4000)
parser.add_argument('--num_warmup_steps', type=int, default=1000)
parser.add_argument('--gradient_accumulation_steps', type=int, default=1)
parser.add_argument('--max_grad_norm', type=float, default=10.0)
parser.add_argument('--num_workers', type=int, default=0)
parser.add_argument('--random_seed', type=int, default=42)
parser.add_argument('--normalization', action='store_true')
parser.add_argument('--fp16', action='store_true')
return parser.parse_args()
def get_cosine_schedule_with_warmup(
optimizer: optim.Optimizer,
num_warmup_steps: int,
num_train_steps: int,
num_cycles: float = 0.5
):
def lr_lambda(current_step):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
progress = float(current_step - num_warmup_steps) / float(max(1, num_train_steps - num_warmup_steps))
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))
return optim.lr_scheduler.LambdaLR(optimizer, lr_lambda)
def no_decay(n: str):
return n.endswith('.bias') or n.endswith('.norm1.weight') or n.endswith('.norm2.weight') or n.endswith('.norm3.weight')
def main():
args = parse_args()
assert args.batch_size % args.gradient_accumulation_steps == 0
args.batch_size = args.batch_size // args.gradient_accumulation_steps
if not os.path.exists(f'model/{args.dataset}'):
pathlib.Path(f'model/{args.dataset}').mkdir(parents=True)
random.seed(args.random_seed)
np.random.seed(args.random_seed)
torch.manual_seed(args.random_seed)
if args.dataset == 'vrd':
args.num_classes = 100
args.num_relations = 71
args.num_box_features = 109
elif args.dataset == 'vg':
args.num_classes = 150
args.num_relations = 51
args.num_box_features = 159
else:
raise ValueError()
args.num_pairwise_features = 15
train_dataset = VRDDataset(args=args)
rl_dataset = VRDInferenceDataset(args=args, split='train')
valid_dataset = VRDInferenceDataset(args=args, split='valid')
valid_data = load_object_from_file(f'output/{args.dataset}/valid_data.dat')
if args.normalization:
train_box_features = np.concatenate([train_dataset.data[image_id]['box_features'] for image_id in train_dataset.data], axis=0)
box_features_scaler = StandardScaler()
box_features_scaler.fit(train_box_features)
for image_id in train_dataset.data:
train_dataset.data[image_id]['box_features'] = box_features_scaler.transform(train_dataset.data[image_id]['box_features'])
for image_id in rl_dataset.data:
rl_dataset.data[image_id]['box_features'] = box_features_scaler.transform(rl_dataset.data[image_id]['box_features'])
for image_id in valid_dataset.data:
valid_dataset.data[image_id]['box_features'] = box_features_scaler.transform(valid_dataset.data[image_id]['box_features'])
for image_id in valid_data:
valid_data[image_id]['box_features'] = box_features_scaler.transform(valid_data[image_id]['box_features'])
train_pairwise_features = []
for image_id in train_dataset.data:
bbox_list = train_dataset.data[image_id]['bbox_list']
train_pairwise_features.append(np.array([extract_pairwise_features(bbox_list[item[0]], bbox_list[item[2]]) for item in train_dataset.data[image_id]['vrd_list']], dtype=np.float32))
if len(train_dataset.data[image_id]['negative_set']) > 0:
train_pairwise_features.append(np.array([extract_pairwise_features(bbox_list[item[0]], bbox_list[item[1]]) for item in train_dataset.data[image_id]['negative_set']], dtype=np.float32))
train_pairwise_features = np.concatenate(train_pairwise_features, axis=0)
pairwise_features_scaler = StandardScaler()
pairwise_features_scaler.fit(train_pairwise_features)
pairwise_features_mean = torch.from_numpy(pairwise_features_scaler.mean_).float().cuda()
pairwise_features_std = torch.from_numpy(pairwise_features_scaler.scale_).float().cuda()
del train_box_features, train_pairwise_features
gc.collect()
else:
box_features_scaler = None
pairwise_features_scaler = None
pairwise_features_mean = 0.0
pairwise_features_std = 1.0
train_loader = DataLoader(
dataset=train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
collate_fn=lambda batch: collate_fn(args=args, batch=batch)
)
rl_loader = DataLoader(
dataset=rl_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
collate_fn=lambda batch: inference_collate_fn(args=args, batch=batch)
)
valid_loader = DataLoader(
dataset=valid_dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_workers,
collate_fn=lambda batch: inference_collate_fn(args=args, batch=batch)
)
model = Transformer(args=args)
optimizer_grouped_parameters = [
{
'params': [p for n, p in model.named_parameters() if not no_decay(n)],
'weight_decay': args.weight_decay
},
{
'params': [p for n, p in model.named_parameters() if no_decay(n)],
'weight_decay': 0.0
}
]
tf_optimizer = optim.AdamW(params=optimizer_grouped_parameters, lr=args.lr)
rl_optimizer = optim.AdamW(params=optimizer_grouped_parameters, lr=args.gamma * args.lr)
num_tf_steps = args.num_epochs * math.ceil(len(train_loader) / args.gradient_accumulation_steps)
tf_scheduler = get_cosine_schedule_with_warmup(
optimizer=tf_optimizer,
num_warmup_steps=args.num_warmup_steps,
num_train_steps=num_tf_steps
)
num_rl_steps = args.num_epochs * math.ceil(len(rl_loader) / args.gradient_accumulation_steps / args.rl_interval)
rl_scheduler = get_cosine_schedule_with_warmup(
optimizer=rl_optimizer,
num_warmup_steps=args.num_warmup_steps,
num_train_steps=num_rl_steps
)
model.cuda()
model.train()
tf_scaler = GradScaler() if args.fp16 else None
rl_scaler = GradScaler() if args.fp16 else None
monte_carlo = MonteCarlo(args=args)
tf_global_step = 0
rl_global_step = 0
for epoch in range(1, args.num_epochs + 1):
for (
box_features,
pairwise_features,
subject_features,
relation_ids,
object_features,
box_padding_mask,
triplet_padding_mask,
batch_indices,
subject_indices,
object_indices,
targets
) in train_loader:
box_features = box_features.cuda()
pairwise_features = pairwise_features.cuda()
subject_features = subject_features.cuda()
relation_ids = relation_ids.cuda()
object_features = object_features.cuda()
box_padding_mask = box_padding_mask.cuda()
triplet_padding_mask = triplet_padding_mask.cuda()
targets = targets.cuda()
if args.normalization:
pairwise_features = (pairwise_features - pairwise_features_mean) / pairwise_features_std
with autocast(enabled=args.fp16):
predictions = model.forward(
box_features=box_features,
pairwise_features=pairwise_features,
subject_features=subject_features,
relation_ids=relation_ids,
object_features=object_features,
box_padding_mask=box_padding_mask,
triplet_padding_mask=triplet_padding_mask,
batch_indices=batch_indices,
subject_indices=subject_indices,
object_indices=object_indices
)
loss = F.cross_entropy(input=predictions.flatten(0, 2), target=targets, ignore_index=-100, reduction='mean')
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
tf_scaler.scale(loss).backward()
else:
loss.backward()
tf_global_step += 1
if tf_global_step % args.gradient_accumulation_steps == 0:
if args.max_grad_norm is not None:
if args.fp16:
tf_scaler.unscale_(tf_optimizer)
nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm, error_if_nonfinite=False)
if args.fp16:
tf_scaler.step(tf_optimizer)
tf_scaler.update()
else:
tf_optimizer.step()
tf_optimizer.zero_grad()
tf_scheduler.step()
if epoch % args.rl_interval == 0:
for (
image_id_list,
box_features,
pairwise_features,
box_padding_mask,
batch_indices,
subject_indices,
object_indices,
candidates_list,
gt_list
) in rl_loader:
box_features = box_features.cuda()
pairwise_features = pairwise_features.cuda()
box_padding_mask = box_padding_mask.cuda()
if args.normalization:
pairwise_features = (pairwise_features - pairwise_features_mean) / pairwise_features_std
greedy_decoding_results, greedy_decoding_cache = model.decode(
box_features=box_features,
pairwise_features=pairwise_features,
box_padding_mask=box_padding_mask,
batch_indices=batch_indices,
subject_indices=subject_indices,
object_indices=object_indices,
candidates_list=candidates_list
)
contextual_box_features, decoded_subject_features, decoded_relation_ids, decoded_object_features, decoded_pairwise_features = greedy_decoding_cache
rewards = monte_carlo.rollout(
model=model,
box_features=box_features,
pairwise_features=pairwise_features,
box_padding_mask=box_padding_mask,
batch_indices=batch_indices,
subject_indices=subject_indices,
object_indices=object_indices,
candidates_list=candidates_list,
contextual_box_features=contextual_box_features,
decoded_subject_features=decoded_subject_features,
decoded_relation_ids=decoded_relation_ids,
decoded_object_features=decoded_object_features,
decoded_pairwise_features=decoded_pairwise_features,
greedy_decoding_results=greedy_decoding_results,
gt_list=gt_list
)
batch_size = len(greedy_decoding_results)
max_num_pairs = max(len(item) for item in greedy_decoding_results)
decoded_batch_indices = np.zeros(shape=(batch_size, max_num_pairs), dtype=np.int64)
decoded_subject_indices = np.zeros(shape=(batch_size, max_num_pairs), dtype=np.int64)
decoded_object_indices = np.zeros(shape=(batch_size, max_num_pairs), dtype=np.int64)
triplet_padding_mask = np.zeros(shape=(batch_size, max_num_pairs), dtype=np.uint8)
decoded_targets = np.zeros(shape=(batch_size, max_num_pairs), dtype=np.int64)
for i, results in enumerate(greedy_decoding_results):
decoded_batch_indices[i, :] = i
decoded_subject_indices[i, : len(results)] = [item[0] for item in results]
decoded_object_indices[i, : len(results)] = [item[2] for item in results]
triplet_padding_mask[i, len(results):] = 1
decoded_targets[i, :len(results)] = [item[1] for item in results]
decoded_targets[i, len(results):] = -100
decoded_batch_indices = torch.from_numpy(decoded_batch_indices).cuda()
decoded_subject_indices = torch.from_numpy(decoded_subject_indices).cuda()
decoded_object_indices = torch.from_numpy(decoded_object_indices).cuda()
triplet_padding_mask = torch.from_numpy(triplet_padding_mask).cuda().bool()
decoded_targets = torch.from_numpy(decoded_targets).cuda()
with autocast(enabled=args.fp16):
predictions = model(
box_features=box_features,
pairwise_features=decoded_pairwise_features[:, 1:, :],
box_padding_mask=box_padding_mask,
triplet_padding_mask=triplet_padding_mask,
subject_features=decoded_subject_features[:, : -1, :],
relation_ids=decoded_relation_ids[:, : -1],
object_features=decoded_object_features[:, : -1, :],
batch_indices=decoded_batch_indices,
subject_indices=decoded_subject_indices,
object_indices=decoded_object_indices,
contextual_box_features=contextual_box_features
)
loss = F.cross_entropy(input=predictions.flatten(0, 1), target=decoded_targets.flatten(), ignore_index=-100, reduction='none')
loss = loss.view(batch_size, max_num_pairs) * torch.from_numpy(rewards).cuda()
triplet_padding_mask = 1.0 - triplet_padding_mask.float()
loss = torch.sum(loss * triplet_padding_mask) / torch.sum(triplet_padding_mask)
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
rl_scaler.scale(loss).backward()
else:
loss.backward()
rl_global_step += 1
if rl_global_step % args.gradient_accumulation_steps == 0:
if args.max_grad_norm is not None:
if args.fp16:
rl_scaler.unscale_(rl_optimizer)
nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm, error_if_nonfinite=False)
if args.fp16:
rl_scaler.step(rl_optimizer)
rl_scaler.update()
else:
rl_optimizer.step()
rl_optimizer.zero_grad()
rl_scheduler.step()
if epoch % args.eval_interval == 0:
prediction_dict = dict()
for (
image_id_list,
box_features,
pairwise_features,
box_padding_mask,
batch_indices,
subject_indices,
object_indices,
candidates_list,
gt_list
) in valid_loader:
box_features = box_features.cuda()
pairwise_features = pairwise_features.cuda()
box_padding_mask = box_padding_mask.cuda()
if args.normalization:
pairwise_features = (pairwise_features - pairwise_features_mean) / pairwise_features_std
decoding_results, _ = model.decode(
box_features=box_features,
pairwise_features=pairwise_features,
box_padding_mask=box_padding_mask,
batch_indices=batch_indices,
subject_indices=subject_indices,
object_indices=object_indices,
candidates_list=candidates_list
)
for image_id, predictions in zip(image_id_list, decoding_results):
prediction_dict[image_id] = predictions
recall_at_k = evaluate_recall_at_k(data=valid_data, prediction_dict=prediction_dict)
print(f'Epoch {epoch} Recall@5 {recall_at_k[0]} Recall@10 {recall_at_k[1]} Recall@20 {recall_at_k[2]} Recall@50 {recall_at_k[3]} Recall@100 {recall_at_k[4]}...')
torch.save({
'model': model.state_dict(),
'tf_optimizer': tf_optimizer.state_dict(),
'rl_optimizer': rl_optimizer.state_dict(),
'epoch': epoch,
'Recall@5': recall_at_k[0],
'Recall@10': recall_at_k[1],
'Recall@20': recall_at_k[2],
'Recall@50': recall_at_k[3],
'Recall@100': recall_at_k[4],
'box_features_scaler': box_features_scaler,
'pairwise_features_scaler': pairwise_features_scaler
}, f'model/{args.dataset}/model_epoch_{epoch}.bin')
if __name__ == '__main__':
main()