forked from Sneeds-Feed-and-Seed/sneedacity
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWaveClip.cpp
1773 lines (1501 loc) · 53.9 KB
/
WaveClip.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**********************************************************************
Sneedacity: A Digital Audio Editor
WaveClip.cpp
?? Dominic Mazzoni
?? Markus Meyer
*******************************************************************//**
\class WaveClip
\brief This allows multiple clips to be a part of one WaveTrack.
*//****************************************************************//**
\class WaveCache
\brief Cache used with WaveClip to cache wave information (for drawing).
*//*******************************************************************/
#include "WaveClip.h"
#include <math.h>
#include <vector>
#include <wx/log.h>
#include "Sequence.h"
#include "Spectrum.h"
#include "Prefs.h"
#include "Envelope.h"
#include "Resample.h"
#include "WaveTrack.h"
#include "Profiler.h"
#include "InconsistencyException.h"
#include "UserException.h"
#include "prefs/SpectrogramSettings.h"
#include "widgets/ProgressDialog.h"
#ifdef _OPENMP
#include <omp.h>
#endif
class WaveCache {
public:
WaveCache()
: dirty(-1)
, start(-1)
, pps(0)
, rate(-1)
, where(0)
, min(0)
, max(0)
, rms(0)
, bl(0)
{
}
WaveCache(size_t len_, double pixelsPerSecond, double rate_, double t0, int dirty_)
: dirty(dirty_)
, len(len_)
, start(t0)
, pps(pixelsPerSecond)
, rate(rate_)
, where(1 + len)
, min(len)
, max(len)
, rms(len)
, bl(len)
{
}
~WaveCache()
{
}
int dirty;
const size_t len { 0 }; // counts pixels, not samples
const double start;
const double pps;
const int rate;
std::vector<sampleCount> where;
std::vector<float> min;
std::vector<float> max;
std::vector<float> rms;
std::vector<int> bl;
};
static void ComputeSpectrumUsingRealFFTf
(float * __restrict buffer, const FFTParam *hFFT,
const float * __restrict window, size_t len, float * __restrict out)
{
size_t i;
if(len > hFFT->Points * 2)
len = hFFT->Points * 2;
for(i = 0; i < len; i++)
buffer[i] *= window[i];
for( ; i < (hFFT->Points * 2); i++)
buffer[i] = 0; // zero pad as needed
RealFFTf(buffer, hFFT);
// Handle the (real-only) DC
float power = buffer[0] * buffer[0];
if(power <= 0)
out[0] = -160.0;
else
out[0] = 10.0 * log10f(power);
for(i = 1; i < hFFT->Points; i++) {
const int index = hFFT->BitReversed[i];
const float re = buffer[index], im = buffer[index + 1];
power = re * re + im * im;
if(power <= 0)
out[i] = -160.0;
else
out[i] = 10.0*log10f(power);
}
}
WaveClip::WaveClip(const SampleBlockFactoryPtr &factory,
sampleFormat format, int rate, int colourIndex)
{
mRate = rate;
mColourIndex = colourIndex;
mSequence = std::make_unique<Sequence>(factory, format);
mEnvelope = std::make_unique<Envelope>(true, 1e-7, 2.0, 1.0);
mWaveCache = std::make_unique<WaveCache>();
mSpecCache = std::make_unique<SpecCache>();
mSpecPxCache = std::make_unique<SpecPxCache>(1);
}
WaveClip::WaveClip(const WaveClip& orig,
const SampleBlockFactoryPtr &factory,
bool copyCutlines)
{
// essentially a copy constructor - but you must pass in the
// current sample block factory, because we might be copying
// from one project to another
mOffset = orig.mOffset;
mRate = orig.mRate;
mColourIndex = orig.mColourIndex;
mSequence = std::make_unique<Sequence>(*orig.mSequence, factory);
mEnvelope = std::make_unique<Envelope>(*orig.mEnvelope);
mWaveCache = std::make_unique<WaveCache>();
mSpecCache = std::make_unique<SpecCache>();
mSpecPxCache = std::make_unique<SpecPxCache>(1);
if ( copyCutlines )
for (const auto &clip: orig.mCutLines)
mCutLines.push_back
( std::make_unique<WaveClip>( *clip, factory, true ) );
mIsPlaceholder = orig.GetIsPlaceholder();
}
WaveClip::WaveClip(const WaveClip& orig,
const SampleBlockFactoryPtr &factory,
bool copyCutlines,
double t0, double t1)
{
// Copy only a range of the other WaveClip
mOffset = orig.mOffset;
mRate = orig.mRate;
mColourIndex = orig.mColourIndex;
mWaveCache = std::make_unique<WaveCache>();
mSpecCache = std::make_unique<SpecCache>();
mSpecPxCache = std::make_unique<SpecPxCache>(1);
mIsPlaceholder = orig.GetIsPlaceholder();
sampleCount s0, s1;
orig.TimeToSamplesClip(t0, &s0);
orig.TimeToSamplesClip(t1, &s1);
mSequence = orig.mSequence->Copy(factory, s0, s1);
mEnvelope = std::make_unique<Envelope>(
*orig.mEnvelope,
mOffset + s0.as_double()/mRate,
mOffset + s1.as_double()/mRate
);
if ( copyCutlines )
// Copy cutline clips that fall in the range
for (const auto &ppClip : orig.mCutLines)
{
const WaveClip* clip = ppClip.get();
double cutlinePosition = orig.mOffset + clip->GetOffset();
if (cutlinePosition >= t0 && cutlinePosition <= t1)
{
auto newCutLine =
std::make_unique< WaveClip >( *clip, factory, true );
newCutLine->SetOffset( cutlinePosition - t0 );
mCutLines.push_back(std::move(newCutLine));
}
}
}
WaveClip::~WaveClip()
{
}
/*! @excsafety{No-fail} */
void WaveClip::SetOffset(double offset)
{
mOffset = offset;
mEnvelope->SetOffset(mOffset);
}
bool WaveClip::GetSamples(samplePtr buffer, sampleFormat format,
sampleCount start, size_t len, bool mayThrow) const
{
return mSequence->Get(buffer, format, start, len, mayThrow);
}
/*! @excsafety{Strong} */
void WaveClip::SetSamples(constSamplePtr buffer, sampleFormat format,
sampleCount start, size_t len)
{
// use Strong-guarantee
mSequence->SetSamples(buffer, format, start, len);
// use No-fail-guarantee
MarkChanged();
}
BlockArray* WaveClip::GetSequenceBlockArray()
{
return &mSequence->GetBlockArray();
}
const BlockArray* WaveClip::GetSequenceBlockArray() const
{
return &mSequence->GetBlockArray();
}
double WaveClip::GetStartTime() const
{
// JS: mOffset is the minimum value and it is returned; no clipping to 0
return mOffset;
}
double WaveClip::GetEndTime() const
{
auto numSamples = mSequence->GetNumSamples();
double maxLen = mOffset + (numSamples+mAppendBufferLen).as_double()/mRate;
// JS: calculated value is not the length;
// it is a maximum value and can be negative; no clipping to 0
return maxLen;
}
sampleCount WaveClip::GetStartSample() const
{
return sampleCount( floor(mOffset * mRate + 0.5) );
}
sampleCount WaveClip::GetEndSample() const
{
return GetStartSample() + mSequence->GetNumSamples();
}
sampleCount WaveClip::GetNumSamples() const
{
return mSequence->GetNumSamples();
}
// Bug 2288 allowed overlapping clips.
// This was a classic fencepost error.
// We are within the clip if start < t <= end.
// Note that BeforeClip and AfterClip must be consistent
// with this definition.
bool WaveClip::WithinClip(double t) const
{
auto ts = (sampleCount)floor(t * mRate + 0.5);
return ts > GetStartSample() && ts < GetEndSample() + mAppendBufferLen;
}
bool WaveClip::BeforeClip(double t) const
{
auto ts = (sampleCount)floor(t * mRate + 0.5);
return ts <= GetStartSample();
}
bool WaveClip::AfterClip(double t) const
{
auto ts = (sampleCount)floor(t * mRate + 0.5);
return ts >= GetEndSample() + mAppendBufferLen;
}
// A sample at time t could be in the clip, but
// a clip start at time t still be from a clip
// not overlapping this one, with this test.
bool WaveClip::IsClipStartAfterClip(double t) const
{
auto ts = (sampleCount)floor(t * mRate + 0.5);
return ts >= GetEndSample() + mAppendBufferLen;
}
///Delete the wave cache - force redraw. Thread-safe
void WaveClip::ClearWaveCache()
{
mWaveCache = std::make_unique<WaveCache>();
}
namespace {
inline
void findCorrection(const std::vector<sampleCount> &oldWhere, size_t oldLen,
size_t newLen,
double t0, double rate, double samplesPerPixel,
int &oldX0, double &correction)
{
// Mitigate the accumulation of location errors
// in copies of copies of ... of caches.
// Look at the loop that populates "where" below to understand this.
// Find the sample position that is the origin in the old cache.
const double oldWhere0 = oldWhere[1].as_double() - samplesPerPixel;
const double oldWhereLast = oldWhere0 + oldLen * samplesPerPixel;
// Find the length in samples of the old cache.
const double denom = oldWhereLast - oldWhere0;
// What sample would go in where[0] with no correction?
const double guessWhere0 = t0 * rate;
if ( // Skip if old and NEW are disjoint:
oldWhereLast <= guessWhere0 ||
guessWhere0 + newLen * samplesPerPixel <= oldWhere0 ||
// Skip unless denom rounds off to at least 1.
denom < 0.5)
{
// The computation of oldX0 in the other branch
// may underflow and the assertion would be violated.
oldX0 = oldLen;
correction = 0.0;
}
else
{
// What integer position in the old cache array does that map to?
// (even if it is out of bounds)
oldX0 = floor(0.5 + oldLen * (guessWhere0 - oldWhere0) / denom);
// What sample count would the old cache have put there?
const double where0 = oldWhere0 + double(oldX0) * samplesPerPixel;
// What correction is needed to align the NEW cache with the old?
const double correction0 = where0 - guessWhere0;
correction = std::max(-samplesPerPixel, std::min(samplesPerPixel, correction0));
wxASSERT(correction == correction0);
}
}
inline void
fillWhere(std::vector<sampleCount> &where, size_t len, double bias, double correction,
double t0, double rate, double samplesPerPixel)
{
// Be careful to make the first value non-negative
const double w0 = 0.5 + correction + bias + t0 * rate;
where[0] = sampleCount( std::max(0.0, floor(w0)) );
for (decltype(len) x = 1; x < len + 1; x++)
where[x] = sampleCount( floor(w0 + double(x) * samplesPerPixel) );
}
}
//
// Getting high-level data from the track for screen display and
// clipping calculations
//
bool WaveClip::GetWaveDisplay(WaveDisplay &display, double t0,
double pixelsPerSecond) const
{
const bool allocated = (display.where != 0);
const size_t numPixels = (int)display.width;
size_t p0 = 0; // least column requiring computation
size_t p1 = numPixels; // greatest column requiring computation, plus one
float *min;
float *max;
float *rms;
int *bl;
std::vector<sampleCount> *pWhere;
if (allocated) {
// assume ownWhere is filled.
min = &display.min[0];
max = &display.max[0];
rms = &display.rms[0];
bl = &display.bl[0];
pWhere = &display.ownWhere;
}
else {
const double tstep = 1.0 / pixelsPerSecond;
const double samplesPerPixel = mRate * tstep;
// Make a tolerant comparison of the pps values in this wise:
// accumulated difference of times over the number of pixels is less than
// a sample period.
const bool ppsMatch = mWaveCache &&
(fabs(tstep - 1.0 / mWaveCache->pps) * numPixels < (1.0 / mRate));
const bool match =
mWaveCache &&
ppsMatch &&
mWaveCache->len > 0 &&
mWaveCache->dirty == mDirty;
if (match &&
mWaveCache->start == t0 &&
mWaveCache->len >= numPixels) {
// Satisfy the request completely from the cache
display.min = &mWaveCache->min[0];
display.max = &mWaveCache->max[0];
display.rms = &mWaveCache->rms[0];
display.bl = &mWaveCache->bl[0];
display.where = &mWaveCache->where[0];
return true;
}
std::unique_ptr<WaveCache> oldCache(std::move(mWaveCache));
int oldX0 = 0;
double correction = 0.0;
size_t copyBegin = 0, copyEnd = 0;
if (match) {
findCorrection(oldCache->where, oldCache->len, numPixels,
t0, mRate, samplesPerPixel,
oldX0, correction);
// Remember our first pixel maps to oldX0 in the old cache,
// possibly out of bounds.
// For what range of pixels can data be copied?
copyBegin = std::min<size_t>(numPixels, std::max(0, -oldX0));
copyEnd = std::min<size_t>(numPixels, std::max(0,
(int)oldCache->len - oldX0
));
}
if (!(copyEnd > copyBegin))
oldCache.reset(0);
mWaveCache = std::make_unique<WaveCache>(numPixels, pixelsPerSecond, mRate, t0, mDirty);
min = &mWaveCache->min[0];
max = &mWaveCache->max[0];
rms = &mWaveCache->rms[0];
bl = &mWaveCache->bl[0];
pWhere = &mWaveCache->where;
fillWhere(*pWhere, numPixels, 0.0, correction,
t0, mRate, samplesPerPixel);
// The range of pixels we must fetch from the Sequence:
p0 = (copyBegin > 0) ? 0 : copyEnd;
p1 = (copyEnd >= numPixels) ? copyBegin : numPixels;
// Optimization: if the old cache is good and overlaps
// with the current one, re-use as much of the cache as
// possible
if (oldCache) {
// Copy what we can from the old cache.
const int length = copyEnd - copyBegin;
const size_t sizeFloats = length * sizeof(float);
const int srcIdx = (int)copyBegin + oldX0;
memcpy(&min[copyBegin], &oldCache->min[srcIdx], sizeFloats);
memcpy(&max[copyBegin], &oldCache->max[srcIdx], sizeFloats);
memcpy(&rms[copyBegin], &oldCache->rms[srcIdx], sizeFloats);
memcpy(&bl[copyBegin], &oldCache->bl[srcIdx], length * sizeof(int));
}
}
if (p1 > p0) {
// Cache was not used or did not satisfy the whole request
std::vector<sampleCount> &where = *pWhere;
/* handle values in the append buffer */
auto numSamples = mSequence->GetNumSamples();
auto a = p0;
// Not all of the required columns might be in the sequence.
// Some might be in the append buffer.
for (; a < p1; ++a) {
if (where[a + 1] > numSamples)
break;
}
// Handle the columns that land in the append buffer.
//compute the values that are outside the overlap from scratch.
if (a < p1) {
sampleFormat seqFormat = mSequence->GetSampleFormat();
bool didUpdate = false;
for(auto i = a; i < p1; i++) {
auto left = std::max(sampleCount{ 0 },
where[i] - numSamples);
auto right = std::min(sampleCount{ mAppendBufferLen },
where[i + 1] - numSamples);
//wxCriticalSectionLocker locker(mAppendCriticalSection);
if (right > left) {
Floats b;
float *pb{};
// left is nonnegative and at most mAppendBufferLen:
auto sLeft = left.as_size_t();
// The difference is at most mAppendBufferLen:
size_t len = ( right - left ).as_size_t();
if (seqFormat == floatSample)
pb = &((float *)mAppendBuffer.ptr())[sLeft];
else {
b.reinit(len);
pb = b.get();
SamplesToFloats(
mAppendBuffer.ptr() + sLeft * SAMPLE_SIZE(seqFormat),
seqFormat, pb, len);
}
float theMax, theMin, sumsq;
{
const float val = pb[0];
theMax = theMin = val;
sumsq = val * val;
}
for(decltype(len) j = 1; j < len; j++) {
const float val = pb[j];
theMax = std::max(theMax, val);
theMin = std::min(theMin, val);
sumsq += val * val;
}
min[i] = theMin;
max[i] = theMax;
rms[i] = (float)sqrt(sumsq / len);
bl[i] = 1; //for now just fake it.
didUpdate=true;
}
}
// Shrink the right end of the range to fetch from Sequence
if(didUpdate)
p1 = a;
}
// Done with append buffer, now fetch the rest of the cache miss
// from the sequence
if (p1 > p0) {
if (!mSequence->GetWaveDisplay(&min[p0],
&max[p0],
&rms[p0],
&bl[p0],
p1-p0,
&where[p0]))
{
return false;
}
}
}
if (!allocated) {
// Now report the results
display.min = min;
display.max = max;
display.rms = rms;
display.bl = bl;
display.where = &(*pWhere)[0];
}
return true;
}
namespace {
void ComputeSpectrogramGainFactors
(size_t fftLen, double rate, int frequencyGain, std::vector<float> &gainFactors)
{
if (frequencyGain > 0) {
// Compute a frequency-dependent gain factor
// scaled such that 1000 Hz gets a gain of 0dB
// This is the reciprocal of the bin number of 1000 Hz:
const double factor = ((double)rate / (double)fftLen) / 1000.0;
auto half = fftLen / 2;
gainFactors.reserve(half);
// Don't take logarithm of zero! Let bin 0 replicate the gain factor for bin 1.
gainFactors.push_back(frequencyGain*log10(factor));
for (decltype(half) x = 1; x < half; x++) {
gainFactors.push_back(frequencyGain*log10(factor * x));
}
}
}
}
bool SpecCache::Matches
(int dirty_, double pixelsPerSecond,
const SpectrogramSettings &settings, double rate) const
{
// Make a tolerant comparison of the pps values in this wise:
// accumulated difference of times over the number of pixels is less than
// a sample period.
const double tstep = 1.0 / pixelsPerSecond;
const bool ppsMatch =
(fabs(tstep - 1.0 / pps) * len < (1.0 / rate));
return
ppsMatch &&
dirty == dirty_ &&
windowType == settings.windowType &&
windowSize == settings.WindowSize() &&
zeroPaddingFactor == settings.ZeroPaddingFactor() &&
frequencyGain == settings.frequencyGain &&
algorithm == settings.algorithm;
}
bool SpecCache::CalculateOneSpectrum
(const SpectrogramSettings &settings,
WaveTrackCache &waveTrackCache,
const int xx, const sampleCount numSamples,
double offset, double rate, double pixelsPerSecond,
int lowerBoundX, int upperBoundX,
const std::vector<float> &gainFactors,
float* __restrict scratch, float* __restrict out) const
{
bool result = false;
const bool reassignment =
(settings.algorithm == SpectrogramSettings::algReassignment);
const size_t windowSizeSetting = settings.WindowSize();
sampleCount from;
// xx may be for a column that is out of the visible bounds, but only
// when we are calculating reassignment contributions that may cross into
// the visible area.
if (xx < 0)
from = sampleCount(
where[0].as_double() + xx * (rate / pixelsPerSecond)
);
else if (xx > (int)len)
from = sampleCount(
where[len].as_double() + (xx - len) * (rate / pixelsPerSecond)
);
else
from = where[xx];
const bool autocorrelation =
settings.algorithm == SpectrogramSettings::algPitchEAC;
const size_t zeroPaddingFactorSetting = settings.ZeroPaddingFactor();
const size_t padding = (windowSizeSetting * (zeroPaddingFactorSetting - 1)) / 2;
const size_t fftLen = windowSizeSetting * zeroPaddingFactorSetting;
auto nBins = settings.NBins();
if (from < 0 || from >= numSamples) {
if (xx >= 0 && xx < (int)len) {
// Pixel column is out of bounds of the clip! Should not happen.
float *const results = &out[nBins * xx];
std::fill(results, results + nBins, 0.0f);
}
}
else {
// We can avoid copying memory when ComputeSpectrum is used below
bool copy = !autocorrelation || (padding > 0) || reassignment;
float *useBuffer = 0;
float *adj = scratch + padding;
{
auto myLen = windowSizeSetting;
// Take a window of the track centered at this sample.
from -= windowSizeSetting >> 1;
if (from < 0) {
// Near the start of the clip, pad left with zeroes as needed.
// from is at least -windowSize / 2
for (auto ii = from; ii < 0; ++ii)
*adj++ = 0;
myLen += from.as_long_long(); // add a negative
from = 0;
copy = true;
}
if (from + myLen >= numSamples) {
// Near the end of the clip, pad right with zeroes as needed.
// newlen is bounded by myLen:
auto newlen = ( numSamples - from ).as_size_t();
for (decltype(myLen) ii = newlen; ii < myLen; ++ii)
adj[ii] = 0;
myLen = newlen;
copy = true;
}
if (myLen > 0) {
useBuffer = (float*)(waveTrackCache.GetFloats(
sampleCount(
floor(0.5 + from.as_double() + offset * rate)
),
myLen,
// Don't throw in this drawing operation
false)
);
if (copy) {
if (useBuffer)
memcpy(adj, useBuffer, myLen * sizeof(float));
else
memset(adj, 0, myLen * sizeof(float));
}
}
}
if (copy || !useBuffer)
useBuffer = scratch;
if (autocorrelation) {
// not reassignment, xx is surely within bounds.
wxASSERT(xx >= 0);
float *const results = &out[nBins * xx];
// This function does not mutate useBuffer
ComputeSpectrum(useBuffer, windowSizeSetting, windowSizeSetting,
rate, results,
autocorrelation, settings.windowType);
}
else if (reassignment) {
static const double epsilon = 1e-16;
const auto hFFT = settings.hFFT.get();
float *const scratch2 = scratch + fftLen;
std::copy(scratch, scratch2, scratch2);
float *const scratch3 = scratch + 2 * fftLen;
std::copy(scratch, scratch2, scratch3);
{
const float *const window = settings.window.get();
for (size_t ii = 0; ii < fftLen; ++ii)
scratch[ii] *= window[ii];
RealFFTf(scratch, hFFT);
}
{
const float *const dWindow = settings.dWindow.get();
for (size_t ii = 0; ii < fftLen; ++ii)
scratch2[ii] *= dWindow[ii];
RealFFTf(scratch2, hFFT);
}
{
const float *const tWindow = settings.tWindow.get();
for (size_t ii = 0; ii < fftLen; ++ii)
scratch3[ii] *= tWindow[ii];
RealFFTf(scratch3, hFFT);
}
for (size_t ii = 0; ii < hFFT->Points; ++ii) {
const int index = hFFT->BitReversed[ii];
const float
denomRe = scratch[index],
denomIm = ii == 0 ? 0 : scratch[index + 1];
const double power = denomRe * denomRe + denomIm * denomIm;
if (power < epsilon)
// Avoid dividing by near-zero below
continue;
double freqCorrection;
{
const double multiplier = -(fftLen / (2.0f * M_PI));
const float
numRe = scratch2[index],
numIm = ii == 0 ? 0 : scratch2[index + 1];
// Find complex quotient --
// Which means, multiply numerator by conjugate of denominator,
// then divide by norm squared of denominator --
// Then just take its imaginary part.
const double
quotIm = (-numRe * denomIm + numIm * denomRe) / power;
// With appropriate multiplier, that becomes the correction of
// the frequency bin.
freqCorrection = multiplier * quotIm;
}
const int bin = (int)((int)ii + freqCorrection + 0.5f);
// Must check if correction takes bin out of bounds, above or below!
// bin is signed!
if (bin >= 0 && bin < (int)hFFT->Points) {
double timeCorrection;
{
const float
numRe = scratch3[index],
numIm = ii == 0 ? 0 : scratch3[index + 1];
// Find another complex quotient --
// Then just take its real part.
// The result has sample interval as unit.
timeCorrection =
(numRe * denomRe + numIm * denomIm) / power;
}
int correctedX = (floor(0.5 + xx + timeCorrection * pixelsPerSecond / rate));
if (correctedX >= lowerBoundX && correctedX < upperBoundX)
{
result = true;
// This is non-negative, because bin and correctedX are
auto ind = (int)nBins * correctedX + bin;
#ifdef _OPENMP
// This assignment can race if index reaches into another thread's bins.
// The probability of a race very low, so this carries little overhead,
// about 5% slower vs allowing it to race.
#pragma omp atomic update
#endif
out[ind] += power;
}
}
}
}
else {
// not reassignment, xx is surely within bounds.
wxASSERT(xx >= 0);
float *const results = &out[nBins * xx];
// Do the FFT. Note that useBuffer is multiplied by the window,
// and the window is initialized with leading and trailing zeroes
// when there is padding. Therefore we did not need to reinitialize
// the part of useBuffer in the padding zones.
// This function mutates useBuffer
ComputeSpectrumUsingRealFFTf
(useBuffer, settings.hFFT.get(), settings.window.get(), fftLen, results);
if (!gainFactors.empty()) {
// Apply a frequency-dependent gain factor
for (size_t ii = 0; ii < nBins; ++ii)
results[ii] += gainFactors[ii];
}
}
}
return result;
}
void SpecCache::Grow(size_t len_, const SpectrogramSettings& settings,
double pixelsPerSecond, double start_)
{
settings.CacheWindows();
// len columns, and so many rows, column-major.
// Don't take column literally -- this isn't pixel data yet, it's the
// raw data to be mapped onto the display.
freq.resize(len_ * settings.NBins());
// Sample counts corresponding to the columns, and to one past the end.
where.resize(len_ + 1);
len = len_;
algorithm = settings.algorithm;
pps = pixelsPerSecond;
start = start_;
windowType = settings.windowType;
windowSize = settings.WindowSize();
zeroPaddingFactor = settings.ZeroPaddingFactor();
frequencyGain = settings.frequencyGain;
}
void SpecCache::Populate
(const SpectrogramSettings &settings, WaveTrackCache &waveTrackCache,
int copyBegin, int copyEnd, size_t numPixels,
sampleCount numSamples,
double offset, double rate, double pixelsPerSecond)
{
const int &frequencyGainSetting = settings.frequencyGain;
const size_t windowSizeSetting = settings.WindowSize();
const bool autocorrelation =
settings.algorithm == SpectrogramSettings::algPitchEAC;
const bool reassignment =
settings.algorithm == SpectrogramSettings::algReassignment;
#ifdef EXPERIMENTAL_ZERO_PADDED_SPECTROGRAMS
const size_t zeroPaddingFactorSetting = settings.ZeroPaddingFactor();
#else
const size_t zeroPaddingFactorSetting = 1;
#endif
// FFT length may be longer than the window of samples that affect results
// because of zero padding done for increased frequency resolution
const size_t fftLen = windowSizeSetting * zeroPaddingFactorSetting;
const auto nBins = settings.NBins();
const size_t bufferSize = fftLen;
const size_t scratchSize = reassignment ? 3 * bufferSize : bufferSize;
std::vector<float> scratch(scratchSize);
std::vector<float> gainFactors;
if (!autocorrelation)
ComputeSpectrogramGainFactors(fftLen, rate, frequencyGainSetting, gainFactors);
// Loop over the ranges before and after the copied portion and compute anew.
// One of the ranges may be empty.
for (int jj = 0; jj < 2; ++jj) {
const int lowerBoundX = jj == 0 ? 0 : copyEnd;
const int upperBoundX = jj == 0 ? copyBegin : numPixels;
#ifdef _OPENMP
// Storage for mutable per-thread data.
// private clause ensures one copy per thread
struct ThreadLocalStorage {
ThreadLocalStorage() { }
~ThreadLocalStorage() { }
void init(WaveTrackCache &waveTrackCache, size_t scratchSize) {
if (!cache) {
cache = std::make_unique<WaveTrackCache>(waveTrackCache.GetTrack());
scratch.resize(scratchSize);
}
}
std::unique_ptr<WaveTrackCache> cache;
std::vector<float> scratch;
} tls;
#pragma omp parallel for private(tls)
#endif
for (auto xx = lowerBoundX; xx < upperBoundX; ++xx)
{
#ifdef _OPENMP
tls.init(waveTrackCache, scratchSize);
WaveTrackCache& cache = *tls.cache;
float* buffer = &tls.scratch[0];
#else
WaveTrackCache& cache = waveTrackCache;
float* buffer = &scratch[0];
#endif
CalculateOneSpectrum(
settings, cache, xx, numSamples,
offset, rate, pixelsPerSecond,
lowerBoundX, upperBoundX,
gainFactors, buffer, &freq[0]);
}
if (reassignment) {
// Need to look beyond the edges of the range to accumulate more
// time reassignments.
// I'm not sure what's a good stopping criterion?
auto xx = lowerBoundX;
const double pixelsPerSample = pixelsPerSecond / rate;
const int limit = std::min((int)(0.5 + fftLen * pixelsPerSample), 100);
for (int ii = 0; ii < limit; ++ii)
{
const bool result =
CalculateOneSpectrum(
settings, waveTrackCache, --xx, numSamples,
offset, rate, pixelsPerSecond,
lowerBoundX, upperBoundX,
gainFactors, &scratch[0], &freq[0]);
if (!result)
break;
}
xx = upperBoundX;
for (int ii = 0; ii < limit; ++ii)
{
const bool result =
CalculateOneSpectrum(
settings, waveTrackCache, xx++, numSamples,
offset, rate, pixelsPerSecond,
lowerBoundX, upperBoundX,
gainFactors, &scratch[0], &freq[0]);
if (!result)
break;
}
// Now Convert to dB terms. Do this only after accumulating
// power values, which may cross columns with the time correction.
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (xx = lowerBoundX; xx < upperBoundX; ++xx) {
float *const results = &freq[nBins * xx];
for (size_t ii = 0; ii < nBins; ++ii) {
float &power = results[ii];
if (power <= 0)
power = -160.0;
else
power = 10.0*log10f(power);
}
if (!gainFactors.empty()) {
// Apply a frequency-dependent gain factor
for (size_t ii = 0; ii < nBins; ++ii)