forked from Sneeds-Feed-and-Seed/sneedacity
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFFT.cpp
701 lines (623 loc) · 19.3 KB
/
FFT.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
/**********************************************************************
FFT.cpp
Dominic Mazzoni
September 2000
*******************************************************************//*!
\file FFT.cpp
\brief Fast Fourier Transform routines.
This file contains a few FFT routines, including a real-FFT
routine that is almost twice as fast as a normal complex FFT,
and a power spectrum routine when you know you don't care
about phase information.
Some of this code was based on a free implementation of an FFT
by Don Cross, available on the web at:
http://www.intersrv.com/~dcross/fft.html
The basic algorithm for his code was based on Numerican Recipes
in Fortran. I optimized his code further by reducing array
accesses, caching the bit reversal table, and eliminating
float-to-double conversions, and I added the routines to
calculate a real FFT and a real power spectrum.
*//*******************************************************************/
/*
Salvo Ventura - November 2006
Added more window functions:
* 4: Blackman
* 5: Blackman-Harris
* 6: Welch
* 7: Gaussian(a=2.5)
* 8: Gaussian(a=3.5)
* 9: Gaussian(a=4.5)
*/
#include "FFT.h"
#include "Internat.h"
#include "SampleFormat.h"
#include <wx/wxcrtvararg.h>
#include <wx/intl.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "RealFFTf.h"
static ArraysOf<int> gFFTBitTable;
static const size_t MaxFastBits = 16;
/* Declare Static functions */
static void InitFFT();
static bool IsPowerOfTwo(size_t x)
{
if (x < 2)
return false;
if (x & (x - 1)) /* Thanks to 'byang' for this cute trick! */
return false;
return true;
}
static size_t NumberOfBitsNeeded(size_t PowerOfTwo)
{
if (PowerOfTwo < 2) {
wxFprintf(stderr, "Error: FFT called with size %ld\n", PowerOfTwo);
exit(1);
}
size_t i = 0;
while (PowerOfTwo > 1)
PowerOfTwo >>= 1, ++i;
return i;
}
int ReverseBits(size_t index, size_t NumBits)
{
size_t i, rev;
for (i = rev = 0; i < NumBits; i++) {
rev = (rev << 1) | (index & 1);
index >>= 1;
}
return rev;
}
void InitFFT()
{
gFFTBitTable.reinit(MaxFastBits);
size_t len = 2;
for (size_t b = 1; b <= MaxFastBits; b++) {
auto &array = gFFTBitTable[b - 1];
array.reinit(len);
for (size_t i = 0; i < len; i++)
array[i] = ReverseBits(i, b);
len <<= 1;
}
}
void DeinitFFT()
{
gFFTBitTable.reset();
}
static inline size_t FastReverseBits(size_t i, size_t NumBits)
{
if (NumBits <= MaxFastBits)
return gFFTBitTable[NumBits - 1][i];
else
return ReverseBits(i, NumBits);
}
/*
* Complex Fast Fourier Transform
*/
void FFT(size_t NumSamples,
bool InverseTransform,
const float *RealIn, const float *ImagIn,
float *RealOut, float *ImagOut)
{
double angle_numerator = 2.0 * M_PI;
double tr, ti; /* temp real, temp imaginary */
if (!IsPowerOfTwo(NumSamples)) {
wxFprintf(stderr, "%ld is not a power of two\n", NumSamples);
exit(1);
}
if (!gFFTBitTable)
InitFFT();
if (!InverseTransform)
angle_numerator = -angle_numerator;
/* Number of bits needed to store indices */
auto NumBits = NumberOfBitsNeeded(NumSamples);
/*
** Do simultaneous data copy and bit-reversal ordering into outputs...
*/
for (size_t i = 0; i < NumSamples; i++) {
auto j = FastReverseBits(i, NumBits);
RealOut[j] = RealIn[i];
ImagOut[j] = (ImagIn == NULL) ? 0.0 : ImagIn[i];
}
/*
** Do the FFT itself...
*/
size_t BlockEnd = 1;
for (size_t BlockSize = 2; BlockSize <= NumSamples; BlockSize <<= 1) {
double delta_angle = angle_numerator / (double) BlockSize;
double sm2 = sin(-2 * delta_angle);
double sm1 = sin(-delta_angle);
double cm2 = cos(-2 * delta_angle);
double cm1 = cos(-delta_angle);
double w = 2 * cm1;
double ar0, ar1, ar2, ai0, ai1, ai2;
for (size_t i = 0; i < NumSamples; i += BlockSize) {
ar2 = cm2;
ar1 = cm1;
ai2 = sm2;
ai1 = sm1;
for (size_t j = i, n = 0; n < BlockEnd; j++, n++) {
ar0 = w * ar1 - ar2;
ar2 = ar1;
ar1 = ar0;
ai0 = w * ai1 - ai2;
ai2 = ai1;
ai1 = ai0;
size_t k = j + BlockEnd;
tr = ar0 * RealOut[k] - ai0 * ImagOut[k];
ti = ar0 * ImagOut[k] + ai0 * RealOut[k];
RealOut[k] = RealOut[j] - tr;
ImagOut[k] = ImagOut[j] - ti;
RealOut[j] += tr;
ImagOut[j] += ti;
}
}
BlockEnd = BlockSize;
}
/*
** Need to normalize if inverse transform...
*/
if (InverseTransform) {
float denom = (float) NumSamples;
for (size_t i = 0; i < NumSamples; i++) {
RealOut[i] /= denom;
ImagOut[i] /= denom;
}
}
}
/*
* Real Fast Fourier Transform
*
* This is merely a wrapper of RealFFTf() from RealFFTf.h.
*/
void RealFFT(size_t NumSamples, const float *RealIn, float *RealOut, float *ImagOut)
{
auto hFFT = GetFFT(NumSamples);
Floats pFFT{ NumSamples };
// Copy the data into the processing buffer
for(size_t i = 0; i < NumSamples; i++)
pFFT[i] = RealIn[i];
// Perform the FFT
RealFFTf(pFFT.get(), hFFT.get());
// Copy the data into the real and imaginary outputs
for (size_t i = 1; i<(NumSamples / 2); i++) {
RealOut[i]=pFFT[hFFT->BitReversed[i] ];
ImagOut[i]=pFFT[hFFT->BitReversed[i]+1];
}
// Handle the (real-only) DC and Fs/2 bins
RealOut[0] = pFFT[0];
RealOut[NumSamples / 2] = pFFT[1];
ImagOut[0] = ImagOut[NumSamples / 2] = 0;
// Fill in the upper half using symmetry properties
for(size_t i = NumSamples / 2 + 1; i < NumSamples; i++) {
RealOut[i] = RealOut[NumSamples-i];
ImagOut[i] = -ImagOut[NumSamples-i];
}
}
/*
* InverseRealFFT
*
* This function computes the inverse of RealFFT, above.
* The RealIn and ImagIn is assumed to be conjugate-symmetric
* and as a result the output is purely real.
* Only the first half of RealIn and ImagIn are used due to this
* symmetry assumption.
*
* This is merely a wrapper of InverseRealFFTf() from RealFFTf.h.
*/
void InverseRealFFT(size_t NumSamples, const float *RealIn, const float *ImagIn,
float *RealOut)
{
auto hFFT = GetFFT(NumSamples);
Floats pFFT{ NumSamples };
// Copy the data into the processing buffer
for (size_t i = 0; i < (NumSamples / 2); i++)
pFFT[2*i ] = RealIn[i];
if(ImagIn == NULL) {
for (size_t i = 0; i < (NumSamples / 2); i++)
pFFT[2*i+1] = 0;
} else {
for (size_t i = 0; i < (NumSamples / 2); i++)
pFFT[2*i+1] = ImagIn[i];
}
// Put the fs/2 component in the imaginary part of the DC bin
pFFT[1] = RealIn[NumSamples / 2];
// Perform the FFT
InverseRealFFTf(pFFT.get(), hFFT.get());
// Copy the data to the (purely real) output buffer
ReorderToTime(hFFT.get(), pFFT.get(), RealOut);
}
/*
* PowerSpectrum
*
* This function uses RealFFTf() from RealFFTf.h to perform the real
* FFT computation, and then squares the real and imaginary part of
* each coefficient, extracting the power and throwing away the phase.
*
* For speed, it does not call RealFFT, but duplicates some
* of its code.
*/
void PowerSpectrum(size_t NumSamples, const float *In, float *Out)
{
auto hFFT = GetFFT(NumSamples);
Floats pFFT{ NumSamples };
// Copy the data into the processing buffer
for (size_t i = 0; i<NumSamples; i++)
pFFT[i] = In[i];
// Perform the FFT
RealFFTf(pFFT.get(), hFFT.get());
// Copy the data into the real and imaginary outputs
for (size_t i = 1; i<NumSamples / 2; i++) {
Out[i]= (pFFT[hFFT->BitReversed[i] ]*pFFT[hFFT->BitReversed[i] ])
+ (pFFT[hFFT->BitReversed[i]+1]*pFFT[hFFT->BitReversed[i]+1]);
}
// Handle the (real-only) DC and Fs/2 bins
Out[0] = pFFT[0]*pFFT[0];
Out[NumSamples / 2] = pFFT[1]*pFFT[1];
}
/*
* Windowing Functions
*/
int NumWindowFuncs()
{
return eWinFuncCount;
}
const TranslatableString WindowFuncName(int whichFunction)
{
switch (whichFunction) {
default:
case eWinFuncRectangular:
return XO("Rectangular");
case eWinFuncBartlett:
/* i18n-hint a proper name */
return XO("Bartlett");
case eWinFuncHamming:
/* i18n-hint a proper name */
return XO("Hamming");
case eWinFuncHann:
/* i18n-hint a proper name */
return XO("Hann");
case eWinFuncBlackman:
/* i18n-hint a proper name */
return XO("Blackman");
case eWinFuncBlackmanHarris:
/* i18n-hint two proper names */
return XO("Blackman-Harris");
case eWinFuncWelch:
/* i18n-hint a proper name */
return XO("Welch");
case eWinFuncGaussian25:
/* i18n-hint a mathematical function named for C. F. Gauss */
return XO("Gaussian(a=2.5)");
case eWinFuncGaussian35:
/* i18n-hint a mathematical function named for C. F. Gauss */
return XO("Gaussian(a=3.5)");
case eWinFuncGaussian45:
/* i18n-hint a mathematical function named for C. F. Gauss */
return XO("Gaussian(a=4.5)");
}
}
void NewWindowFunc(int whichFunction, size_t NumSamplesIn, bool extraSample, float *in)
{
int NumSamples = (int)NumSamplesIn;
if (extraSample) {
wxASSERT(NumSamples > 0);
--NumSamples;
}
wxASSERT(NumSamples > 0);
switch (whichFunction) {
default:
wxFprintf(stderr, "FFT::WindowFunc - Invalid window function: %d\n", whichFunction);
break;
case eWinFuncRectangular:
// Multiply all by 1.0f -- do nothing
break;
case eWinFuncBartlett:
{
// Bartlett (triangular) window
const int nPairs = (NumSamples - 1) / 2; // whether even or odd NumSamples, this is correct
const float denom = NumSamples / 2.0f;
in[0] = 0.0f;
for (int ii = 1;
ii <= nPairs; // Yes, <=
++ii) {
const float value = ii / denom;
in[ii] *= value;
in[NumSamples - ii] *= value;
}
// When NumSamples is even, in[half] should be multiplied by 1.0, so unchanged
// When odd, the value of 1.0 is not reached
}
break;
case eWinFuncHamming:
{
// Hamming
const double multiplier = 2 * M_PI / NumSamples;
static const double coeff0 = 0.54, coeff1 = -0.46;
for (int ii = 0; ii < NumSamples; ++ii)
in[ii] *= coeff0 + coeff1 * cos(ii * multiplier);
}
break;
case eWinFuncHann:
{
// Hann
const double multiplier = 2 * M_PI / NumSamples;
static const double coeff0 = 0.5, coeff1 = -0.5;
for (int ii = 0; ii < NumSamples; ++ii)
in[ii] *= coeff0 + coeff1 * cos(ii * multiplier);
}
break;
case eWinFuncBlackman:
{
// Blackman
const double multiplier = 2 * M_PI / NumSamples;
const double multiplier2 = 2 * multiplier;
static const double coeff0 = 0.42, coeff1 = -0.5, coeff2 = 0.08;
for (int ii = 0; ii < NumSamples; ++ii)
in[ii] *= coeff0 + coeff1 * cos(ii * multiplier) + coeff2 * cos(ii * multiplier2);
}
break;
case eWinFuncBlackmanHarris:
{
// Blackman-Harris
const double multiplier = 2 * M_PI / NumSamples;
const double multiplier2 = 2 * multiplier;
const double multiplier3 = 3 * multiplier;
static const double coeff0 = 0.35875, coeff1 = -0.48829, coeff2 = 0.14128, coeff3 = -0.01168;
for (int ii = 0; ii < NumSamples; ++ii)
in[ii] *= coeff0 + coeff1 * cos(ii * multiplier) + coeff2 * cos(ii * multiplier2) + coeff3 * cos(ii * multiplier3);
}
break;
case eWinFuncWelch:
{
// Welch
const float N = NumSamples;
for (int ii = 0; ii < NumSamples; ++ii) {
const float iOverN = ii / N;
in[ii] *= 4 * iOverN * (1 - iOverN);
}
}
break;
case eWinFuncGaussian25:
{
// Gaussian (a=2.5)
// Precalculate some values, and simplify the fmla to try and reduce overhead
static const double A = -2 * 2.5*2.5;
const float N = NumSamples;
for (int ii = 0; ii < NumSamples; ++ii) {
const float iOverN = ii / N;
// full
// in[ii] *= exp(-0.5*(A*((ii-NumSamples/2)/NumSamples/2))*(A*((ii-NumSamples/2)/NumSamples/2)));
// reduced
in[ii] *= exp(A * (0.25 + (iOverN * iOverN) - iOverN));
}
}
break;
case eWinFuncGaussian35:
{
// Gaussian (a=3.5)
static const double A = -2 * 3.5*3.5;
const float N = NumSamples;
for (int ii = 0; ii < NumSamples; ++ii) {
const float iOverN = ii / N;
in[ii] *= exp(A * (0.25 + (iOverN * iOverN) - iOverN));
}
}
break;
case eWinFuncGaussian45:
{
// Gaussian (a=4.5)
static const double A = -2 * 4.5*4.5;
const float N = NumSamples;
for (int ii = 0; ii < NumSamples; ++ii) {
const float iOverN = ii / N;
in[ii] *= exp(A * (0.25 + (iOverN * iOverN) - iOverN));
}
}
break;
}
if (extraSample && whichFunction != eWinFuncRectangular) {
double value = 0.0;
switch (whichFunction) {
case eWinFuncHamming:
value = 0.08;
break;
case eWinFuncGaussian25:
value = exp(-2 * 2.5 * 2.5 * 0.25);
break;
case eWinFuncGaussian35:
value = exp(-2 * 3.5 * 3.5 * 0.25);
break;
case eWinFuncGaussian45:
value = exp(-2 * 4.5 * 4.5 * 0.25);
break;
default:
break;
}
in[NumSamples] *= value;
}
}
// See cautions in FFT.h !
void WindowFunc(int whichFunction, size_t NumSamples, float *in)
{
bool extraSample = false;
switch (whichFunction)
{
case eWinFuncHamming:
case eWinFuncHann:
case eWinFuncBlackman:
case eWinFuncBlackmanHarris:
extraSample = true;
break;
default:
break;
case eWinFuncBartlett:
// PRL: Do nothing here either
// But I want to comment that the old function did this case
// wrong in the second half of the array, in case NumSamples was odd
// but I think that never happened, so I am not bothering to preserve that
break;
}
NewWindowFunc(whichFunction, NumSamples, extraSample, in);
}
void DerivativeOfWindowFunc(int whichFunction, size_t NumSamples, bool extraSample, float *in)
{
if (eWinFuncRectangular == whichFunction)
{
// Rectangular
// There are deltas at the ends
wxASSERT(NumSamples > 0);
--NumSamples;
// in[0] *= 1.0f;
for (int ii = 1; ii < (int)NumSamples; ++ii)
in[ii] = 0.0f;
in[NumSamples] *= -1.0f;
return;
}
if (extraSample) {
wxASSERT(NumSamples > 0);
--NumSamples;
}
wxASSERT(NumSamples > 0);
double A;
switch (whichFunction) {
case eWinFuncBartlett:
{
// Bartlett (triangular) window
// There are discontinuities in the derivative at the ends, and maybe at the midpoint
const int nPairs = (NumSamples - 1) / 2; // whether even or odd NumSamples, this is correct
const float value = 2.0f / NumSamples;
in[0] *=
// Average the two limiting values of discontinuous derivative
value / 2.0f;
for (int ii = 1;
ii <= nPairs; // Yes, <=
++ii) {
in[ii] *= value;
in[NumSamples - ii] *= -value;
}
if (NumSamples % 2 == 0)
// Average the two limiting values of discontinuous derivative
in[NumSamples / 2] = 0.0f;
if (extraSample)
in[NumSamples] *=
// Average the two limiting values of discontinuous derivative
-value / 2.0f;
else
// Halve the multiplier previously applied
// Average the two limiting values of discontinuous derivative
in[NumSamples - 1] *= 0.5f;
}
break;
case eWinFuncHamming:
{
// Hamming
// There are deltas at the ends
const double multiplier = 2 * M_PI / NumSamples;
static const double coeff0 = 0.54, coeff1 = -0.46 * multiplier;
// TODO This code should be more explicit about the precision it intends.
// For now we get C4305 warnings, truncation from 'const double' to 'float'
in[0] *= coeff0;
if (!extraSample)
--NumSamples;
for (int ii = 0; ii < (int)NumSamples; ++ii)
in[ii] *= - coeff1 * sin(ii * multiplier);
if (extraSample)
in[NumSamples] *= - coeff0;
else
// slightly different
in[NumSamples] *= - coeff0 - coeff1 * sin(NumSamples * multiplier);
}
break;
case eWinFuncHann:
{
// Hann
const double multiplier = 2 * M_PI / NumSamples;
const double coeff1 = -0.5 * multiplier;
for (int ii = 0; ii < (int)NumSamples; ++ii)
in[ii] *= - coeff1 * sin(ii * multiplier);
if (extraSample)
in[NumSamples] = 0.0f;
}
break;
case eWinFuncBlackman:
{
// Blackman
const double multiplier = 2 * M_PI / NumSamples;
const double multiplier2 = 2 * multiplier;
const double coeff1 = -0.5 * multiplier, coeff2 = 0.08 * multiplier2;
for (int ii = 0; ii < (int)NumSamples; ++ii)
in[ii] *= - coeff1 * sin(ii * multiplier) - coeff2 * sin(ii * multiplier2);
if (extraSample)
in[NumSamples] = 0.0f;
}
break;
case eWinFuncBlackmanHarris:
{
// Blackman-Harris
const double multiplier = 2 * M_PI / NumSamples;
const double multiplier2 = 2 * multiplier;
const double multiplier3 = 3 * multiplier;
const double coeff1 = -0.48829 * multiplier,
coeff2 = 0.14128 * multiplier2, coeff3 = -0.01168 * multiplier3;
for (int ii = 0; ii < (int)NumSamples; ++ii)
in[ii] *= - coeff1 * sin(ii * multiplier) - coeff2 * sin(ii * multiplier2) - coeff3 * sin(ii * multiplier3);
if (extraSample)
in[NumSamples] = 0.0f;
}
break;
case eWinFuncWelch:
{
// Welch
const float N = NumSamples;
const float NN = NumSamples * NumSamples;
for (int ii = 0; ii < (int)NumSamples; ++ii) {
in[ii] *= 4 * (N - ii - ii) / NN;
}
if (extraSample)
in[NumSamples] = 0.0f;
// Average the two limiting values of discontinuous derivative
in[0] /= 2.0f;
in[NumSamples - 1] /= 2.0f;
}
break;
case eWinFuncGaussian25:
// Gaussian (a=2.5)
A = -2 * 2.5*2.5;
goto Gaussian;
case eWinFuncGaussian35:
// Gaussian (a=3.5)
A = -2 * 3.5*3.5;
goto Gaussian;
case eWinFuncGaussian45:
// Gaussian (a=4.5)
A = -2 * 4.5*4.5;
goto Gaussian;
Gaussian:
{
// Gaussian (a=2.5)
// There are deltas at the ends
const float invN = 1.0f / NumSamples;
const float invNN = invN * invN;
// Simplify formula from the loop for ii == 0, add term for the delta
in[0] *= exp(A * 0.25) * (1 - invN);
if (!extraSample)
--NumSamples;
for (int ii = 1; ii < (int)NumSamples; ++ii) {
const float iOverN = ii * invN;
in[ii] *= exp(A * (0.25 + (iOverN * iOverN) - iOverN)) * (2 * ii * invNN - invN);
}
if (extraSample)
in[NumSamples] *= exp(A * 0.25) * (invN - 1);
else {
// Slightly different
const float iOverN = NumSamples * invN;
in[NumSamples] *= exp(A * (0.25 + (iOverN * iOverN) - iOverN)) * (2 * NumSamples * invNN - invN - 1);
}
}
break;
default:
wxFprintf(stderr, "FFT::DerivativeOfWindowFunc - Invalid window function: %d\n", whichFunction);
}
}