-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathsg_net.py
564 lines (506 loc) · 23.4 KB
/
sg_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
import time
import torch
import random
import numpy as np
from tqdm import tqdm, trange
# from torch_geometric.nn import GCNConv
from layers_batch import AttentionModule, TenorNetworkModule
from utils import *
from tensorboardX import SummaryWriter
# from warmup_scheduler import GradualWarmupScheduler
import os
import dgcnn as dgcnn
import torch.nn as nn
from collections import OrderedDict
from sklearn import metrics
class SG(torch.nn.Module):
"""
SimGNN: A Neural Network Approach to Fast Graph Similarity Computation
https://arxiv.org/abs/1808.05689
"""
def __init__(self, args, number_of_labels):
"""
:param args: Arguments object.
:param number_of_labels: Number of node labels.
"""
super(SG, self).__init__()
self.args = args
self.number_labels = number_of_labels
self.setup_layers()
def calculate_bottleneck_features(self):
"""
Deciding the shape of the bottleneck layer.
"""
self.feature_count = self.args.tensor_neurons
def setup_layers(self):
"""
Creating the layers.
"""
self.calculate_bottleneck_features()
self.attention = AttentionModule(self.args)
self.tensor_network = TenorNetworkModule(self.args)
self.fully_connected_first = torch.nn.Linear(self.feature_count, self.args.bottle_neck_neurons)
self.scoring_layer = torch.nn.Linear(self.args.bottle_neck_neurons, 1)
bias_bool = False # TODO
self.dgcnn_s_conv1 = nn.Sequential(
nn.Conv2d(3*2, self.args.filters_1, kernel_size=1, bias=bias_bool),
nn.BatchNorm2d(self.args.filters_1),
nn.LeakyReLU(negative_slope=0.2))
self.dgcnn_f_conv1 = nn.Sequential(
nn.Conv2d(self.number_labels * 2, self.args.filters_1, kernel_size=1, bias=bias_bool),
nn.BatchNorm2d(self.args.filters_1),
nn.LeakyReLU(negative_slope=0.2))
self.dgcnn_s_conv2 = nn.Sequential(
nn.Conv2d(self.args.filters_1*2, self.args.filters_2, kernel_size=1, bias=bias_bool),
nn.BatchNorm2d(self.args.filters_2),
nn.LeakyReLU(negative_slope=0.2))
self.dgcnn_f_conv2 = nn.Sequential(
nn.Conv2d(self.args.filters_1 * 2, self.args.filters_2, kernel_size=1, bias=bias_bool),
nn.BatchNorm2d(self.args.filters_2),
nn.LeakyReLU(negative_slope=0.2))
self.dgcnn_s_conv3 = nn.Sequential(
nn.Conv2d(self.args.filters_2*2, self.args.filters_3, kernel_size=1, bias=bias_bool),
nn.BatchNorm2d(self.args.filters_3),
nn.LeakyReLU(negative_slope=0.2))
self.dgcnn_f_conv3 = nn.Sequential(
nn.Conv2d(self.args.filters_2 * 2, self.args.filters_3, kernel_size=1, bias=bias_bool),
nn.BatchNorm2d(self.args.filters_3),
nn.LeakyReLU(negative_slope=0.2))
self.dgcnn_conv_end = nn.Sequential(nn.Conv1d(self.args.filters_3 * 2,
self.args.filters_3, kernel_size=1, bias=bias_bool),
nn.BatchNorm1d(self.args.filters_3), nn.LeakyReLU(negative_slope=0.2))
def dgcnn_conv_pass(self, x):
self.k = self.args.K
xyz = x[:,:3,:] # Bx3xN
sem = x[:,3:,:] # BxfxN
xyz = dgcnn.get_graph_feature(xyz, k=self.k, cuda=self.args.cuda) #Bx6xNxk
xyz = self.dgcnn_s_conv1(xyz)
xyz1 = xyz.max(dim=-1, keepdim=False)[0]
xyz = dgcnn.get_graph_feature(xyz1, k=self.k, cuda=self.args.cuda)
xyz = self.dgcnn_s_conv2(xyz)
xyz2 = xyz.max(dim=-1, keepdim=False)[0]
xyz = dgcnn.get_graph_feature(xyz2, k=self.k, cuda=self.args.cuda)
xyz = self.dgcnn_s_conv3(xyz)
xyz3 = xyz.max(dim=-1, keepdim=False)[0]
sem = dgcnn.get_graph_feature(sem, k=self.k, cuda=self.args.cuda) # Bx2fxNxk
sem = self.dgcnn_f_conv1(sem)
sem1 = sem.max(dim=-1, keepdim=False)[0]
sem = dgcnn.get_graph_feature(sem1, k=self.k, cuda=self.args.cuda)
sem = self.dgcnn_f_conv2(sem)
sem2 = sem.max(dim=-1, keepdim=False)[0]
sem = dgcnn.get_graph_feature(sem2, k=self.k, cuda=self.args.cuda)
sem = self.dgcnn_f_conv3(sem)
sem3 = sem.max(dim=-1, keepdim=False)[0]
x = torch.cat((xyz3, sem3), dim=1)
# x = self.dgcnn_conv_all(x)
x = self.dgcnn_conv_end(x)
# print(x.shape)
x = x.permute(0, 2, 1) # [node_num, 32]
return x
def forward(self, data):
"""
Forward pass with graphs.
:param data: Data dictionary.
:return score: Similarity score.
"""
features_1 = data["features_1"].cuda(self.args.gpu)
features_2 = data["features_2"].cuda(self.args.gpu)
# features B x (3+label_num) x node_num
abstract_features_1 = self.dgcnn_conv_pass(features_1) # node_num x feature_size(filters-3)
abstract_features_2 = self.dgcnn_conv_pass(features_2) #BXNXF
# print("abstract feature: ", abstract_features_1.shape)
pooled_features_1, attention_scores_1 = self.attention(abstract_features_1) # bxfx1
pooled_features_2, attention_scores_2 = self.attention(abstract_features_2)
# print("pooled_features_1: ", pooled_features_1.shape)
scores = self.tensor_network(pooled_features_1, pooled_features_2)
# print("scores: ", scores.shape)
scores = scores.permute(0,2,1) # bx1xf
# print("scores: ", scores.shape)
scores = torch.nn.functional.relu(self.fully_connected_first(scores))
# print("scores: ", scores.shape)
score = torch.sigmoid(self.scoring_layer(scores)).reshape(-1)
# print("scores: ", score.shape)
return score, attention_scores_1, attention_scores_2
class SGTrainer(object):
"""
SG model trainer.
"""
def __init__(self, args, train=True):
"""
:param args: Arguments object.
"""
self.args = args
self.model_pth = self.args.model
self.initial_label_enumeration(train)
self.setup_model(train)
self.writer = SummaryWriter(logdir=self.args.logdir)
def setup_model(self,train=True):
"""
Creating a SG Net.
"""
self.model = SG(self.args, self.number_of_labels)
if (not train) and self.model_pth != "":
print("loading model: ", self.model_pth)
# original saved file with dataparallel
state_dict = torch.load(self.model_pth, map_location='cuda:'+str(self.args.gpu)) #'cuda:0'
# create new dict that does not contain 'module'
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove 'module'
new_state_dict[name] = v
# load params
self.model.load_state_dict(new_state_dict)
self.model = torch.nn.DataParallel(self.model, device_ids=[self.args.gpu])
self.model.cuda(self.args.gpu)
def initial_label_enumeration(self,train=True):
"""
Collecting the unique node idsentifiers.
"""
print("\nEnumerating unique labels.\n")
if train:
self.training_graphs = []
self.testing_graphs = []
self.evaling_graphs = []
train_sequences = self.args.train_sequences
eval_sequences = self.args.eval_sequences
print("Train sequences: ", train_sequences)
print("evaling sequences: ", eval_sequences)
graph_pairs_dir = self.args.graph_pairs_dir
for sq in train_sequences:
train_graphs=load_paires(os.path.join(self.args.pair_list_dir, sq+".txt"),graph_pairs_dir)
self.training_graphs.extend(train_graphs)
for sq in eval_sequences:
self.evaling_graphs=load_paires(os.path.join(self.args.pair_list_dir, sq+".txt"),graph_pairs_dir)
self.testing_graphs = self.evaling_graphs
assert len(self.evaling_graphs) != 0
assert len(self.training_graphs) != 0
self.global_labels = [i for i in range(12)] # 20
self.global_labels = {val: index for index, val in enumerate(self.global_labels)}
self.number_of_labels = len(self.global_labels)
self.keepnode = self.args.keep_node
print(self.global_labels)
print(self.number_of_labels)
def create_batches(self, split="train"):
"""
Creating batches from the training graph list.
:return batches: List of lists with batches.
"""
if split == "train":
random.shuffle(self.training_graphs)
batches = [self.training_graphs[graph:graph + self.args.batch_size] for graph in
range(0, len(self.training_graphs), self.args.batch_size)]
else:
random.shuffle(self.evaling_graphs)
batches = [self.evaling_graphs[graph:graph + self.args.batch_size] for graph in
range(0, len(self.evaling_graphs), self.args.batch_size)]
return batches
def augment_data(self,batch_xyz_1):
# batch_xyz_1 = flip_point_cloud(batch_xyz_1)
batch_xyz_1 = rotate_point_cloud(batch_xyz_1)
batch_xyz_1 = jitter_point_cloud(batch_xyz_1)
batch_xyz_1 = random_scale_point_cloud(batch_xyz_1)
batch_xyz_1 = rotate_perturbation_point_cloud(batch_xyz_1)
batch_xyz_1 = shift_point_cloud(batch_xyz_1)
return batch_xyz_1
def pc_normalize(self, pc):
""" pc: NxC, return NxC """
l = pc.shape[0]
centroid = np.mean(pc, axis=0)
pc = pc - centroid
m = np.max(np.sqrt(np.sum(pc**2, axis=1)))
pc = pc / m
return pc
def transfer_to_torch(self, data, training=True):
"""
Transferring the data to torch and creating a hash table with the indices, features and target.
:param data: Data dictionary.
:return new_data: Dictionary of Torch Tensors.
"""
# data_ori = data.copy()
# print("data[edge1]: ", data["edges_1"]) # debug
node_num_1 = len(data["nodes_1"])
node_num_2 = len(data["nodes_2"])
if node_num_1 > self.args.node_num:
sampled_index_1 = np.random.choice(node_num_1, self.args.node_num, replace=False)
sampled_index_1.sort()
data["nodes_1"] = np.array(data["nodes_1"])[sampled_index_1].tolist()
data["centers_1"] = np.array(data["centers_1"])[sampled_index_1]
elif node_num_1 < self.args.node_num:
data["nodes_1"] = np.concatenate(
(np.array(data["nodes_1"]), -np.ones(self.args.node_num - node_num_1))).tolist() # padding 0
data["centers_1"] = np.concatenate(
(np.array(data["centers_1"]), np.zeros((self.args.node_num - node_num_1,3)))) # padding 0
if node_num_2 > self.args.node_num:
sampled_index_2 = np.random.choice(node_num_2, self.args.node_num, replace=False)
sampled_index_2.sort()
data["nodes_2"] = np.array(data["nodes_2"])[sampled_index_2].tolist()
data["centers_2"] = np.array(data["centers_2"])[sampled_index_2] # node_num x 3
elif node_num_2 < self.args.node_num:
data["nodes_2"] = np.concatenate((np.array(data["nodes_2"]), -np.ones(self.args.node_num - node_num_2))).tolist()
data["centers_2"] = np.concatenate(
(np.array(data["centers_2"]), np.zeros((self.args.node_num - node_num_2, 3)))) # padding 0
new_data = dict()
features_1 = np.expand_dims(np.array(
[np.zeros(self.number_of_labels).tolist() if node == -1 else [
1.0 if self.global_labels[node] == label_index else 0 for label_index in self.global_labels.values()]
for node in data["nodes_1"]]), axis=0)
features_2 = np.expand_dims(np.array(
[np.zeros(self.number_of_labels).tolist() if node == -1 else [
1.0 if self.global_labels[node] == label_index else 0 for label_index in self.global_labels.values()]
for node in data["nodes_2"]]), axis=0)
# 1xnode_numx3
batch_xyz_1 = np.expand_dims(data["centers_1"], axis=0)
batch_xyz_2 = np.expand_dims(data["centers_2"], axis=0)
if training:
# random flip data
if random.random() > 0.5:
batch_xyz_1[:,:,0] = -batch_xyz_1[:,:,0]
batch_xyz_2[:, :, 0] = -batch_xyz_2[:, :, 0]
batch_xyz_1 = self.augment_data(batch_xyz_1)
batch_xyz_2 = self.augment_data(batch_xyz_2)
# Bxnum_nodex(3+num_label) -> Bx(3+num_label)xnum_node
xyz_feature_1 = np.concatenate((batch_xyz_1, features_1), axis=2).transpose(0,2,1)
xyz_feature_2 = np.concatenate((batch_xyz_2, features_2), axis=2).transpose(0,2,1)
new_data["features_1"] = np.squeeze(xyz_feature_1)
new_data["features_2"] = np.squeeze(xyz_feature_2)
if data["distance"] <= self.args.p_thresh: # TODO
new_data["target"] = 1.0
elif data["distance"] >= 20:
new_data["target"] = 0.0
else:
new_data["target"] = -100.0
print("distance error: ", data["distance"])
exit(-1)
return new_data
def process_batch(self, batch, training=True):
"""
Forward pass with a batch of data.
:param batch: Batch of graph pair locations.
:return loss: Loss on the batch.
"""
self.optimizer.zero_grad()
losses = 0
batch_target = []
batch_feature_1 = []
batch_feature_2 = []
for graph_pair in batch:
data = process_pair(graph_pair)
data = self.transfer_to_torch(data, training)
batch_feature_1.append(data["features_1"])
batch_feature_2.append(data["features_2"])
batch_feature_1.append(data["features_2"])
batch_feature_2.append(data["features_1"])
target = data["target"]
batch_target.append(target)
batch_target.append(target)
data = dict()
data["features_1"] = torch.FloatTensor(np.array(batch_feature_1))
data["features_2"] = torch.FloatTensor(np.array(batch_feature_2))
data["target"] = torch.FloatTensor(np.array(batch_target))
prediction, _,_ = self.model(data)
losses = torch.mean(torch.nn.functional.binary_cross_entropy(prediction, data["target"].cuda(self.args.gpu)))
if training:
losses.backward(retain_graph=True)
self.optimizer.step()
loss = losses.item()
pred_batch = prediction.cpu().detach().numpy().reshape(-1)
gt_batch = data["target"].cpu().detach().numpy().reshape(-1)
return loss, pred_batch, gt_batch
def fit(self):
"""
Fitting a model.
"""
print("\nModel training.\n")
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.args.learning_rate,
weight_decay=self.args.weight_decay)
f1_max_his = 0
self.model.train()
epochs = trange(self.args.epochs, leave=True, desc="Epoch")
for epoch in epochs:
batches = self.create_batches()
self.model.train()
self.loss_sum = 0
main_index = 0
for index, batch in tqdm(enumerate(batches), total=len(batches), desc="Batches"):
a = time.time()
loss_score,_,_ = self.process_batch(batch)
main_index = main_index + len(batch)
self.loss_sum = self.loss_sum + loss_score * len(batch)
loss = self.loss_sum / main_index
epochs.set_description("Epoch (Loss=%g)" % round(loss, 5))
self.writer.add_scalar('Train_sum', loss, int(epoch)*len(batches)*int(self.args.batch_size) + main_index)
self.writer.add_scalar('Train loss', loss_score, int(epoch) * len(batches)*int(self.args.batch_size) + main_index)
if epoch % 2 == 0:
print("\nModel saving.\n")
loss, f1_max = self.score("eval")
self.writer.add_scalar("eval_loss", loss, int(epoch)*len(batches)*int(self.args.batch_size))
self.writer.add_scalar("f1_max_score", f1_max, int(epoch) * len(batches) * int(self.args.batch_size))
dict_name = self.args.logdir + "/" + str(epoch)+'.pth'
torch.save(self.model.state_dict(), dict_name)
if f1_max_his <= f1_max:
f1_max_his = f1_max
dict_name = self.args.logdir + "/" + str(epoch)+"_best" + '.pth'
torch.save(self.model.state_dict(), dict_name)
print("\n best model saved ", dict_name)
print("------------------------------")
def score(self, split = 'test'):
"""
Scoring on the test set.
"""
print("\n\nModel evaluation.\n")
self.model.eval()
self.scores = []
self.ground_truth = []
if split == "test":
splits = self.testing_graphs
elif split == "eval":
splits = self.evaling_graphs
else:
print("Check split: ", split)
splits = []
exit(-1)
losses = 0
pred_db = []
gt_db = []
batches = self.create_batches(split="eval")
for index, batch in tqdm(enumerate(batches), total=len(batches), desc="Eval Batches"):
loss_score,pred_b,gt_b = self.process_batch(batch, False)
losses += loss_score
pred_db.extend(pred_b)
gt_db.extend(gt_b)
precision, recall, pr_thresholds = metrics.precision_recall_curve(gt_db, pred_db)
# calc F1-score
F1_score = 2 * precision * recall / (precision + recall)
F1_score = np.nan_to_num(F1_score)
F1_max_score = np.max(F1_score)
print("\nModel " + split + " F1_max_score: " + str(F1_max_score) + ".")
model_loss = losses / len(batches)
print("\nModel " + split + " loss: " + str(model_loss) + ".")
return model_loss, F1_max_score
def print_evaluation(self):
"""
Printing the error rates.
"""
norm_ged_mean = np.mean(self.ground_truth)
base_error = np.mean([(n - norm_ged_mean) ** 2 for n in self.ground_truth])
model_error = np.mean(self.scores)
print("\nBaseline error: " + str(round(base_error, 5)) + ".")
print("\nModel test error: " + str(round(model_error, 5)) + ".")
def eval_pair(self, pair_file):
data = (pair_file)
data = self.transfer_to_torch(data, False)
target = data["target"]
batch_target = []
batch_feature_1 = []
batch_feature_2 = []
batch_feature_1.append(data["features_1"])
batch_feature_2.append(data["features_2"])
batch_target.append(target)
data_torch = dict()
data_torch["features_1"] = torch.FloatTensor(np.array(batch_feature_1))
data_torch["features_2"] = torch.FloatTensor(np.array(batch_feature_2))
data_torch["target"] = torch.FloatTensor(np.array(batch_target))
self.model.eval()
result_1, result_2,result_3 = self.model(data_torch)
prediction = result_1.cpu().detach().numpy().reshape(-1)
att_weights_1 = result_2.cpu().detach().numpy().reshape(-1)
att_weights_2 = result_3.cpu().detach().numpy().reshape(-1)
# print("prediction shape: ", prediction.shape)
return prediction, att_weights_1, att_weights_2
def eval_batch_pair(self, batch):
self.model.eval()
batch_target = []
batch_feature_1 = []
batch_feature_2 = []
for graph_pair in batch:
data = process_pair(graph_pair)
data = self.transfer_to_torch(data, False)
batch_feature_1.append(data["features_1"])
batch_feature_2.append(data["features_2"])
target = data["target"]
batch_target.append(target)
data = dict()
data["features_1"] = torch.FloatTensor(np.array(batch_feature_1))
data["features_2"] = torch.FloatTensor(np.array(batch_feature_2))
data["target"] = torch.FloatTensor(np.array(batch_target))
prediction, _, _ = self.model(data)
prediction = prediction.cpu().detach().numpy().reshape(-1)
gt = np.array(batch_target).reshape(-1)
return prediction, gt
def eval_batch_pair_data(self, batch):
self.model.eval()
batch_target = []
batch_feature_1 = []
batch_feature_2 = []
for graph_pair in batch:
data = self.transfer_to_torch(graph_pair, False)
batch_feature_1.append(data["features_1"])
batch_feature_2.append(data["features_2"])
target = data["target"]
batch_target.append(target)
data = dict()
data["features_1"] = torch.FloatTensor(np.array(batch_feature_1))
data["features_2"] = torch.FloatTensor(np.array(batch_feature_2))
data["target"] = torch.FloatTensor(np.array(batch_target))
forward_t = time.time()
prediction, _, _ = self.model(data)
print("forward time: ", time.time() - forward_t)
prediction = prediction.cpu().detach().numpy().reshape(-1)
gt = np.array(batch_target).reshape(-1)
return prediction, gt
def eval_batch_pair(self, batch):
self.model.eval()
batch_target = []
batch_feature_1 = []
batch_feature_2 = []
for graph_pair in batch:
data = process_pair(graph_pair)
data = self.transfer_to_torch(data, False)
batch_feature_1.append(data["features_1"])
batch_feature_2.append(data["features_2"])
target = data["target"]
batch_target.append(target)
data = dict()
data["features_1"] = torch.FloatTensor(np.array(batch_feature_1))
data["features_2"] = torch.FloatTensor(np.array(batch_feature_2))
data["target"] = torch.FloatTensor(np.array(batch_target))
# forward_t = time.time()
prediction, _, _ = self.model(data)
# print("forward time: ", time.time() - forward_t)
prediction = prediction.cpu().detach().numpy().reshape(-1)
gt = np.array(batch_target).reshape(-1)
return prediction, gt
def write_soft_label(self, data_dir):
eval_graphs = []
listDir(data_dir, eval_graphs)
TP = 0
TN = 0
FP = 0
FN = 0
thresh = 0.5
for i in range(len(eval_graphs)):
pair_file = eval_graphs[i]
data = json.load(open(pair_file))
pred, _, _ = self.eval_pair(data)
if pred <= thresh:
if data["distance"] <=10:
TN += 1
else:
FN += 1
data["distance"] = 100
else:
if data["distance"] <=10:
TP += 1
else:
FP += 1
data["distance"] = 0
file_name = os.path.join("/media/work/data/kitti/odometry/semantic-kitti/DGCNN_graph_pairs_3_20/pred_label/05",
pair_file.split('/')[-1])
print("write pred label: ", file_name)
with open(file_name, "w", encoding="utf-8") as file:
json.dump(data, file)
precesion = TP / (TP + FP)
recall = TP / (TP + FN)
print("thresh: ", thresh)
print("precision: ", precesion)
print("recall:", recall)