forked from openvinotoolkit/nncf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpipelines.py
291 lines (254 loc) · 12.6 KB
/
pipelines.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# Copyright (c) 2025 Intel Corporation
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, List, Optional
import numpy as np
import openvino as ov
import torch
import torch.utils
import torch.utils.data
import torchvision
from datasets import load_dataset
from optimum.exporters.openvino.convert import export_from_model
from optimum.intel.openvino import OVModelForCausalLM
from transformers import AutoModelForCausalLM
import nncf
from nncf.experimental.torch.sparsify_activations import sparsify_activations
from nncf.experimental.torch.sparsify_activations.sparsify_activations_impl import SparsifyActivationsAlgoBackend
from nncf.experimental.torch.sparsify_activations.torch_backend import PTSparsifyActivationsAlgoBackend
from nncf.torch.quantization.layers import INT8AsymmetricWeightsDecompressor
from nncf.torch.quantization.layers import INT8SymmetricWeightsDecompressor
from tests.post_training.pipelines.base import PT_BACKENDS
from tests.post_training.pipelines.base import BackendType
from tests.post_training.pipelines.base import BaseTestPipeline
from tests.post_training.pipelines.base import ErrorReason
from tests.post_training.pipelines.base import ErrorReport
from tests.post_training.pipelines.base import PTQNumCompressNodes
from tests.post_training.pipelines.base import RunInfo
from tests.post_training.pipelines.base import get_num_fq_int4_int8
from tests.post_training.pipelines.image_classification_timm import ImageClassificationTimm
from tests.post_training.pipelines.lm_weight_compression import LMWeightCompression
from tests.post_training.pipelines.lm_weight_compression import WCNumCompressNodes
from tests.post_training.pipelines.lm_weight_compression import WCTimeStats
from tests.post_training.pipelines.lm_weight_compression import collect_int4_int8_num_errors
from tests.torch.experimental.sparsify_activations.helpers import count_sparsifier_patterns_in_ov
from tests.torch.helpers import set_torch_seed
@dataclass
class SATimeStats(WCTimeStats):
"""
Contains statistics that are parsed from the stdout of Sparsify Activations tests.
"""
time_sparsifier_calibration: Optional[str] = None
STAT_NAMES = [*WCTimeStats.STAT_NAMES, "Activations Sparsifier calibration time"]
VAR_NAMES = [*WCTimeStats.VAR_NAMES, "time_sparsifier_calibration"]
REGEX_PREFIX = [*WCTimeStats.REGEX_PREFIX, SparsifyActivationsAlgoBackend.CALIBRATION_TRACKING_DESC]
@dataclass
class SANumCompressNodes(PTQNumCompressNodes, WCNumCompressNodes):
num_sparse_activations: Optional[int] = None
def get_data(self):
data = super().get_data()
data["Num sparse activations"] = self.num_sparse_activations
return data
class SAPipelineMixin(BaseTestPipeline):
"""
Common methods in the test pipeline for Sparsify Activations.
"""
def __init__(
self,
reported_name: str,
model_id: str,
backend: BackendType,
compression_params: dict,
output_dir: Path,
data_dir: Path,
reference_data: dict,
no_eval: bool,
run_benchmark_app: bool,
torch_compile_validation: bool = False,
params: dict = None,
batch_size: int = 1,
memory_monitor: bool = False,
):
super().__init__(
reported_name,
model_id,
backend,
compression_params,
output_dir,
data_dir,
reference_data,
no_eval,
run_benchmark_app,
torch_compile_validation,
params,
batch_size,
memory_monitor,
)
self.run_info = RunInfo(model=reported_name, backend=self.backend, num_compress_nodes=SANumCompressNodes())
def collect_data_from_stdout(self, stdout: str):
stats = SATimeStats()
stats.fill(stdout)
self.run_info.stats_from_output = stats
@set_torch_seed(seed=42)
@torch.no_grad()
def _compress(self):
"""
Actual call of weight compression and/or activation sparsification.
"""
self.compressed_model = self.model
if self.compression_params.get("compress_weights", None) is not None:
self.compressed_model = nncf.compress_weights(
self.compressed_model,
dataset=self.calibration_dataset,
**self.compression_params["compress_weights"],
)
if self.compression_params.get("sparsify_activations", None) is not None:
self.compressed_model = sparsify_activations(
self.compressed_model,
dataset=self.calibration_dataset,
**self.compression_params["sparsify_activations"],
)
def get_num_compressed(self) -> None:
ie = ov.Core()
model = ie.read_model(model=self.path_compressed_ir)
num_fq, num_int4, num_int8 = get_num_fq_int4_int8(model)
num_sparse_activations = count_sparsifier_patterns_in_ov(model)
self.run_info.num_compress_nodes.num_fq_nodes = num_fq
self.run_info.num_compress_nodes.num_int8 = num_int8
self.run_info.num_compress_nodes.num_int4 = num_int4
self.run_info.num_compress_nodes.num_sparse_activations = num_sparse_activations
def collect_errors(self) -> List[ErrorReport]:
errors = super().collect_errors()
run_info = self.run_info
reference_data = self.reference_data
errors.extend(collect_int4_int8_num_errors(self.run_info, self.reference_data))
ref_num_sparse_activations = reference_data.get("num_sparse_activations")
num_sparse_activations = run_info.num_compress_nodes.num_sparse_activations
if ref_num_sparse_activations is not None and num_sparse_activations != ref_num_sparse_activations:
status_msg = (
f"Regression: The number of sparse activations is {num_sparse_activations}, "
f"which differs from reference {ref_num_sparse_activations}."
)
errors.append(ErrorReport(ErrorReason.NUM_COMPRESSED, status_msg))
return errors
class LMSparsifyActivations(SAPipelineMixin, LMWeightCompression):
DEFAULT_SUBSET_SIZE = 32
def prepare_model(self):
is_stateful = self.params.get("is_stateful", False)
if self.backend in PT_BACKENDS:
if is_stateful:
msg = f"is_stateful={is_stateful} is not supported for PyTorch backend."
raise RuntimeError(msg)
self.model_hf = AutoModelForCausalLM.from_pretrained(
self.model_id,
torch_dtype=torch.float32,
device_map="cuda" if self.backend == BackendType.CUDA_TORCH else "cpu",
attn_implementation="eager",
)
self.model = self.model_hf
elif self.backend in [BackendType.OV, BackendType.FP32]:
if is_stateful:
self.fp32_model_dir = self.fp32_model_dir.parent / (self.fp32_model_dir.name + "_sf")
if not (self.fp32_model_dir / self.OV_MODEL_NAME).exists():
# export by model_id
self.model_hf = OVModelForCausalLM.from_pretrained(
self.model_id,
trust_remote_code=True,
export=True,
load_in_8bit=False,
compile=False,
stateful=is_stateful,
)
else:
# no export, load from IR. Applicable for sequential run of test cases in local environment.
self.model_hf = OVModelForCausalLM.from_pretrained(
self.fp32_model_dir, load_in_8bit=False, compile=False, stateful=is_stateful
)
self.model = self.model_hf.model
else:
msg = f"backend={self.backend.value} is not supported."
raise RuntimeError(msg)
if not (self.fp32_model_dir / self.OV_MODEL_NAME).exists():
self._dump_model_fp32()
# Use FP16 for CUDA_TORCH backend as it is more common when running LLM on CUDA.
if self.backend == BackendType.CUDA_TORCH:
self.model_hf.half()
def get_transform_calibration_fn(self):
process_one = super().get_transform_calibration_fn()
def transform_fn(chunk: List[Dict]):
samples = [process_one(data, max_tokens=128, filter_bad_tokens=False) for data in chunk]
inputs = {}
for input_name, sample_value in samples[0].items():
if isinstance(sample_value, torch.Tensor):
inputs[input_name] = torch.cat([sample[input_name] for sample in samples], dim=0)
elif isinstance(sample_value, np.ndarray):
inputs[input_name] = np.concatenate([sample[input_name] for sample in samples], axis=0)
elif isinstance(sample_value, ov.Tensor):
shape = sample_value.get_shape()
shape[0] = len(samples)
inputs[input_name] = ov.Tensor(sample_value.get_element_type(), shape)
else:
msg = f"Failed to generate calibration set for {input_name} in type {type(sample_value)}"
raise RuntimeError(msg)
if self.backend == BackendType.CUDA_TORCH:
for input_name in inputs:
inputs[input_name] = torch.from_numpy(inputs[input_name]).cuda()
return inputs
return transform_fn
def prepare_calibration_dataset(self):
subset_size = self.compression_params.get("subset_size") or self.DEFAULT_SUBSET_SIZE
dataset = (
load_dataset("wikitext", "wikitext-2-v1", split="train", revision="b08601e")
.filter(lambda example: len(example["text"].split()) > 256)
.shuffle(seed=42)
.select(range(subset_size))
.to_list()
)
chunks = [dataset[i : i + self.batch_size] for i in range(0, subset_size, self.batch_size)]
self.calibration_dataset = nncf.Dataset(chunks, self.get_transform_calibration_fn())
def save_compressed_model(self):
self.path_compressed_ir = self.output_model_dir / self.OV_MODEL_NAME
if self.backend == BackendType.CUDA_TORCH:
self.model_hf.float()
for module in self.model_hf.nncf.modules():
if isinstance(module, (INT8AsymmetricWeightsDecompressor, INT8SymmetricWeightsDecompressor)):
module.result_dtype = torch.float32
export_from_model(
self.model_hf, self.output_model_dir, stateful=False, compression_option="fp32", device="cuda"
)
else:
super().save_compressed_model()
def _dump_model_fp32(self):
if self.backend == BackendType.CUDA_TORCH:
export_from_model(
self.model_hf, self.fp32_model_dir, stateful=False, compression_option="fp32", device="cuda"
)
else:
super()._dump_model_fp32()
def _compress(self):
super()._compress()
if self.backend in PT_BACKENDS:
# This helps reproducibility but is not needed in actual use.
for sparsifier in PTSparsifyActivationsAlgoBackend.get_sparsifiers(self.compressed_model):
original_dtype = sparsifier.running_threshold.dtype
sparsifier.running_threshold = sparsifier.running_threshold.half().to(original_dtype)
class ImageClassificationTimmSparsifyActivations(SAPipelineMixin, ImageClassificationTimm):
DEFAULT_SUBSET_SIZE = 256
def prepare_calibration_dataset(self):
subset_size = self.compression_params.get("subset_size") or self.DEFAULT_SUBSET_SIZE
val_dataset = torchvision.datasets.ImageFolder(
root=self.data_dir / "imagenet" / "val", transform=self.transform
)
indices = np.random.default_rng(42).choice(len(val_dataset), size=subset_size, replace=False)
subset = torch.utils.data.Subset(val_dataset, indices=indices)
loader = torch.utils.data.DataLoader(subset, batch_size=self.batch_size, num_workers=2, shuffle=False)
self.calibration_dataset = nncf.Dataset(loader, self.get_transform_calibration_fn())