forked from Tazinho/Advanced-R-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path16-Rcpp.Rmd
513 lines (411 loc) · 11.6 KB
/
16-Rcpp.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
# Rcpp
## Getting started with C++
1. __<span style="color:red">Q</span>__: With the basics of C++ in hand, it's now a great time to practice by reading and writing some simple C++ functions. For each of the following functions, read the code and figure out what the corresponding base R function is. You might not understand every part of the code yet, but you should be able to figure out the basics of what the function does.
```cpp
double f1(NumericVector x) {
int n = x.size();
double y = 0;
for(int i = 0; i < n; ++i) {
y += x[i] / n;
}
return y;
}
NumericVector f2(NumericVector x) {
int n = x.size();
NumericVector out(n);
out[0] = x[0];
for(int i = 1; i < n; ++i) {
out[i] = out[i - 1] + x[i];
}
return out;
}
bool f3(LogicalVector x) {
int n = x.size();
for(int i = 0; i < n; ++i) {
if (x[i]) return true;
}
return false;
}
int f4(Function pred, List x) {
int n = x.size();
for(int i = 0; i < n; ++i) {
LogicalVector res = pred(x[i]);
if (res[0]) return i + 1;
}
return 0;
}
NumericVector f5(NumericVector x, NumericVector y) {
int n = std::max(x.size(), y.size());
NumericVector x1 = rep_len(x, n);
NumericVector y1 = rep_len(y, n);
NumericVector out(n);
for (int i = 0; i < n; ++i) {
out[i] = std::min(x1[i], y1[i]);
}
return out;
}
```
__<span style="color:green">A</span>__: The R equivalents are:
* f1: `mean()`
* f2: `cumsum()`
* f3: `any()`
* f4: `Position()`
* f5: `pmin()`
1. __<span style="color:red">Q</span>__: To practice your function writing skills, convert the following functions into C++. For now, assume the inputs have no missing values.
1. `all()`
```{r, eval = FALSE}
cppFunction('
bool allC(LogicalVector x) {
int n = x.size();
for(int i = 0; i < n; ++i) {
if (!x[i]) return false;
}
return true;
}')
```
2. `cumprod()`, `cummin()`, `cummax()`.
```{r, eval = FALSE}
NumericVector cumprodC(NumericVector x) {
int n = x.size();
NumericVector out(n);
out[0] = x[0];
for(int i = 1; i < n; ++i) {
out[i] = out[i - 1] * x[i];
}
return out;
}')
cppFunction('
NumericVector cumminC(NumericVector x) {
int n = x.size();
NumericVector out(n);
out[0] = x[0];
for(int i = 1; i < n; ++i) {
out[i] = std::min(out[i - 1], x[i]);
}
return out;
}')
cppFunction('
NumericVector cummaxC(NumericVector x) {
int n = x.size();
NumericVector out(n);
out[0] = x[0];
for(int i = 1; i < n; ++i) {
out[i] = std::max(out[i - 1], x[i]);
}
return out;
}')
```
3. `diff()`. Start by assuming lag 1, and then generalise for lag `n`.
```{r, eval = FALSE}
cppFunction('
NumericVector diffC(NumericVector x){
int n = x.size();
NumericVector out(n - 1);
for(int i = 1; i < n; i++){
out[i - 1] = x[i] - x[i - 1];
}
return out ;
}')
cppFunction('
NumericVector difflagC(NumericVector x, int lag){
int n = x.size();
NumericVector out(n - lag);
for(int i = lag; i < n; i++){
out[i - lag] = x[i] - x[i - lag];
}
return out;
}')
```
4. `range`.
```{r, eval = FALSE}
cppFunction('NumericVector rangeC(NumericVector x){
double omin, omax;
int n = x.size();
NumericVector out(2);
omin = x[0];
omax = x[0];
for(int i = 1; i < n; i++){
omin = std::min(x[i], omin);
omax = std::max(x[i], omax);
}
out[0] = omin;
out[1] = omax;
return out;
}')
```
5. `var`. Read about the approaches you can take on
[wikipedia](http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance).
Whenever implementing a numerical algorithm, it's always good to check what
is already known about the problem.
## Missing values
1. Rewrite any of the functions from the first exercise to deal with missing
values. If `na.rm` is true, ignore the missing values. If `na.rm` is false,
return a missing value if the input contains any missing values. Some
good functions to practice with are `min()`, `max()`, `range()`, `mean()`,
and `var()`.
```{r, eval = FALSE}
cppFunction('NumericVector minC(NumericVector x, bool narm){
int n = x.size();
LogicalVector index = is_na(x);
NumericVector omin(1);
bool na_check = false;
bool na_check_all = true;
for(int i; i<n; i++){
if (index[i]) na_check = true;
}
for(int i; i<n; i++){
if (!index[i]) na_check_all = false;
}
if (narm) {
for(int i = n-1; i >= 0; i--){
if (!index[i]) omin[0] = x[i];
}
for(int i = 1; i < n; i++) {
if (!index[i]) omin[0] = std::min(x[i], omin[0]);
}
if (na_check_all) {
omin[0] = NA_REAL;
}
} else if (na_check) {
omin[0] = NA_REAL;
} else {
omin[0] = x[0];
for(int i = 1; i < n; i++){
omin = std::min(x[i], omin[0]);
}
}
return omin;
}')
cppFunction('NumericVector maxC(NumericVector x, bool narm){
int n = x.size();
LogicalVector index = is_na(x);
NumericVector omax(1);
bool na_check = false;
bool na_check_all = true;
for(int i; i<n; i++){
if (index[i]) na_check = true;
}
for(int i; i<n; i++){
if (!index[i]) na_check_all = false;
}
if (narm) {
for(int i = n-1; i >= 0; i--){
if (!index[i]) omax[0] = x[i];
}
for(int i = 1; i < n; i++) {
if (!index[i]) omax[0] = std::max(x[i], omax[0]);
}
if (na_check_all) {
omax[0] = NA_REAL;
}
} else if (na_check) {
omax[0] = NA_REAL;
} else {
omax[0] = x[0];
for(int i = 1; i < n; i++){
omax = std::max(x[i], omax[0]);
}
}
return omax;
}')
cppFunction('NumericVector rangeC(NumericVector x, bool narm){
int n = x.size();
LogicalVector index = is_na(x);
NumericVector out(2);
NumericVector omin(1);
NumericVector omax(1);
bool na_check = false;
bool na_check_all = true;
for(int i; i<n; i++){
if (index[i]) na_check = true;
}
for(int i; i<n; i++){
if (!index[i]) na_check_all = false;
}
/* Minimum */
if (narm) {
for(int i = n-1; i >= 0; i--){
if (!index[i]) omin[0] = x[i];
}
for(int i = 1; i < n; i++) {
if (!index[i]) omin[0] = std::min(x[i], omin[0]);
}
if (na_check_all) {
omin[0] = NA_REAL;
}
} else if (na_check) {
omin[0] = NA_REAL;
} else {
omin[0] = x[0];
for(int i = 1; i < n; i++){
omin = std::min(x[i], omin[0]);
}
}
/* Maximum */
if (narm) {
for(int i = n-1; i >= 0; i--){
if (!index[i]) omax[0] = x[i];
}
for(int i = 1; i < n; i++) {
if (!index[i]) omax[0] = std::max(x[i], omax[0]);
}
if (na_check_all) {
omax[0] = NA_REAL;
}
} else if (na_check) {
omax[0] = NA_REAL;
} else {
omax[0] = x[0];
for(int i = 1; i < n; i++){
omax = std::max(x[i], omax[0]);
}
}
out[0] = omin[0];
out[1] = omax[0];
return out;
}')
cppFunction('NumericVector meanC(NumericVector x, bool narm){
int n = x.size();
LogicalVector index = is_na(x);
bool na_check = false;
bool na_check_all = true;
int n_corrected = 0;
NumericVector out(1);
for(int i; i<n; i++){
if (index[i]) na_check = true;
}
for(int i; i<n; i++){
if (!index[i]) na_check_all = false;
}
for(int i; i<n; i++){
if (!index[i]) n_corrected++;
}
/* narm = T */
if (narm){
if (na_check_all) {
out[0] = NA_REAL;
} else {
out[0] = 0;
for(int i = 0; i < n; ++i) {
if (!index[i]) out[0] += x[i] / n_corrected;
}
}
}
/* narm = F */
if (!narm){
if (na_check) {
out[0] = NA_REAL;
} else {
for(int i = 0; i < n; ++i) {
out[0] += x[i] / n;
}
}
}
return out;
}')
```
1. Rewrite `cumsum()` and `diff()` so they can handle missing values. Note that
these functions have slightly more complicated behaviour.
```{r, eval = FALSE}
cppFunction('NumericVector cumsumC(NumericVector x) {
int n = x.size();
NumericVector out(n);
LogicalVector index = is_na(x);
out[0] = x[0];
for(int i = 1; i < n; ++i) {
if (index[i - 1]) {
out[i] = NA_REAL;
} else{
out[i] = out[i - 1] + x[i];
}
}
return out;
}')
cppFunction('
NumericVector difflagC(NumericVector x, int lag){
int n = x.size();
NumericVector out(n - lag);
LogicalVector index = is_na(x);
for(int i = lag; i < n; i++){
if ((index[i]) || (index[i - lag])) {
out[i - lag] = NA_REAL;
} else {
out[i - lag] = x[i] - x[i - lag];
}
}
return out;
}')
```
## The STL
To practice using the STL algorithms and data structures, implement the following using R functions in C++, using the hints provided:
1. `median.default()` using `partial_sort`.
```{r, eval = FALSE}
#include <algorithm>
#include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
double medianC(NumericVector x) {
int n = x.size();
double out;
if (n % 2 == 0){
std::partial_sort (x.begin(), x.begin() + n / 2 + 1, x.end());
out = (x[n / 2 - 1] + x[n / 2]) / 2;
} else {
std::partial_sort (x.begin(), x.begin() + (n + 1) / 2, x.end());
out = x[(n + 1) / 2 - 1];
}
return out;
}
```
1. `%in%` using `unordered_set` and the `find()` or `count()` methods.
1. `unique()` using an `unordered_set` (challenge: do it in one line!).
```{r, eval = FALSE}
// [[Rcpp::plugins(cpp11)]]
#include <Rcpp.h>
#include <unordered_set>
using namespace Rcpp;
// [[Rcpp::export]]
NumericVector uniqueC(NumericVector x) {
std::unordered_set<int> seen;
int n = x.size();
LogicalVector dup(n);
std::vector<double> out;
for (int i = 0; i < n; ++i) {
dup[i] = !seen.insert(x[i]).second;
if (!dup[i]) {
out.push_back(x[i]);
}
}
return wrap(out);
}
```
1. `min()` using `std::min()`, or `max()` using `std::max()`.
```{r, eval = FALSE}
#include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
double minC(NumericVector x){
int n = x.size();
double out;
for (int i = 0; i < n; i++){
out = std::min(out, x[i]);
}
return out;
}
```
1. `which.min()` using `min_element`, or `which.max()` using `max_element`.
```{r, eval = FALSE}
#include <Rcpp.h>
#include <algorithm>
#include <iterator>
using namespace Rcpp;
// [[Rcpp::export]]
double which_minC(NumericVector x){
int out;
out = std::distance(x.begin(),std::min_element(x.begin(),x.end()));
out++;
return out;
}
```
1. `setdiff()`, `union()`, and `intersect()` for integers using sorted ranges
and `set_union`, `set_intersection` and `set_difference`.