-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
446 lines (372 loc) · 15.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
import sys
import os
import time
import json
from settings import Config
path = os.path.abspath('./sacred')
sys.path = [path] + sys.path
import torch
from builders import (scheduler_builder, dataloader_builder,
model_builder, optimizer_builder, loss_builder,
config_builder)
import logger as log
from logger import report_after_batch, report_after_epoch, report_after_training
from sacred.observers import SlackObserver, FileStorageObserver, MongoObserver
from sacred import Experiment
from argparse import ArgumentParser
from utils import ExitHandler
import utils
def set_device(config):
device_id = config['device_id']
if not device_id == 'cpu' and torch.cuda.is_available():
if device_id is None:
device = torch.device('cuda')
else:
if isinstance(device_id, list):
device = torch.device('cuda:{}'.format(device_id[0]))
else:
device = torch.device('cuda:{}'.format(device_id))
torch.cuda.init()
else:
device = torch.device('cpu')
# make compatible with torch dataparallel
# TODO does not work with data parallel
config['device_id'] = []
config['device'] = device
def main(_run):
# initialize logger after observers are appended
log.initialize(_run)
cfg = _run.config
set_device(cfg)
train_cfg = cfg['training']
validation_cfg = cfg.get('validation')
checkpoint_frequency = train_cfg['checkpoint_frequency']
restore_checkpoint_cfg = train_cfg['restore_checkpoint']
max_epochs = train_cfg['epochs']
model_files = run_train(train_cfg['dataloader'], train_cfg['model'], train_cfg['scheduler'],
train_cfg['optimizer'], train_cfg['losses'], validation_cfg,
checkpoint_frequency, restore_checkpoint_cfg, max_epochs,
_run)
if 'test' in cfg:
test_dataset_cfg = cfg['test']
score = evaluate_checkpoint_on(test_dataset_cfg, model_files[-1])
log_result(score, _run)
return format_result(score)
else:
return True
def run_train(dataloader_cfg, model_cfg, scheduler_cfg,
optimizer_cfg, loss_cfg, validation_cfg, checkpoint_frequency,
restore_checkpoint, max_epochs, _run):
# Lets cuDNN benchmark conv implementations and choose the fastest.
# Only good if sizes stay the same within the main loop!
torch.backends.cudnn.benchmark = True
exit_handler = ExitHandler()
device = _run.config['device']
device_id = _run.config['device_id']
# during training just one dataloader
dataloader = dataloader_builder.build(dataloader_cfg)[0]
epoch = 0
if restore_checkpoint is not None:
model_cfg, optimizer_cfg, epoch = utils.restore_checkpoint(restore_checkpoint, model_cfg, optimizer_cfg)
def overwrite(to_overwrite, dic):
to_overwrite.update(dic)
return to_overwrite
# some models depend on dataset, for example num_joints
model_cfg = overwrite(dataloader.dataset.info, model_cfg)
model = model_builder.build(model_cfg)
loss_cfg['model'] = model
loss = loss_builder.build(loss_cfg)
loss = loss.to(device)
parameters = list(model.parameters()) + list(loss.parameters())
optimizer = optimizer_builder.build(optimizer_cfg, parameters)
lr_scheduler = scheduler_builder.build(scheduler_cfg, optimizer, epoch)
if validation_cfg is None:
validation_dataloaders = None
else:
validation_dataloaders = dataloader_builder.build(validation_cfg)
keep = False
file_logger = log.get_file_logger()
logger = log.get_logger()
model = torch.nn.DataParallel(model, device_ids=device_id)
model.cuda()
model = model.train()
trained_models = []
exit_handler.register(file_logger.save_checkpoint,
model, optimizer, "atexit",
model_cfg)
start_training_time = time.time()
end = time.time()
while epoch < max_epochs:
epoch += 1
lr_scheduler.step()
logger.info("Starting Epoch %d/%d", epoch, max_epochs)
len_batch = len(dataloader)
acc_time = 0
for batch_id, data in enumerate(dataloader):
optimizer.zero_grad()
endpoints = model(data, model.module.endpoints)
logger.debug("datasets %s", list(data['split_info'].keys()))
data.update(endpoints)
# threoretically losses could also be caluclated distributed.
losses = loss(endpoints, data)
loss_mean = torch.mean(losses)
loss_mean.backward()
optimizer.step()
acc_time += time.time() - end
end = time.time()
report_after_batch(_run=_run, logger=logger, batch_id=batch_id, batch_len=len_batch,
acc_time=acc_time, loss_mean=loss_mean, max_mem=torch.cuda.max_memory_allocated())
if epoch % checkpoint_frequency == 0:
path = file_logger.save_checkpoint(model, optimizer, epoch, model_cfg)
trained_models.append(path)
report_after_epoch(_run=_run, epoch=epoch, max_epoch=max_epochs)
if validation_dataloaders is not None and \
epoch % checkpoint_frequency == 0:
model.eval()
# Lets cuDNN benchmark conv implementations and choose the fastest.
# Only good if sizes stay the same within the main loop!
# not the case for segmentation
torch.backends.cudnn.benchmark = False
score = evaluate(validation_dataloaders, model, epoch, keep=keep)
logger.info(score)
log_score(score, _run, prefix="val_", step=epoch)
torch.backends.cudnn.benchmark = True
model.train()
report_after_training(_run=_run, max_epoch=max_epochs, total_time=time.time() - start_training_time)
path = file_logger.save_checkpoint(model, optimizer, epoch, model_cfg)
if path:
trained_models.append(path)
file_logger.close()
# TODO get best performing val model
evaluate_last = _run.config['training'].get('evaluate_last', 1)
if len(trained_models) < evaluate_last:
logger.info("Only saved %d models (evaluate_last=%d)", len(trained_models), evaluate_last)
return trained_models[-evaluate_last:]
def evaluate_checkpoint(_run):
log.initialize(_run)
cfg = _run.config
set_device(cfg)
validation_cfg = cfg['validation']
restore_checkpoint_cfg = cfg['restore_checkpoint']
model_update_cfg = cfg.get('model', {})
scores = evaluate_checkpoint_on(restore_checkpoint_cfg, validation_cfg, _run, model_update_cfg)
log_score(scores, _run, "val_")
return format_result(scores)
def evaluate_checkpoint_on(restore_checkpoint, dataset_cfg, _run, model_update_cfg={}):
model_cfg, _, epoch = utils.restore_checkpoint(restore_checkpoint, model_cfg=model_update_cfg, map_location='cpu')
#model_cfg['backbone']['output_dim'] = 256
dataloaders = dataloader_builder.build(dataset_cfg)
model = model_builder.build(model_cfg)
# TODO needs to be from dataset
if 'seg_class_mapping' in model_cfg:
mapping = model_cfg['seg_class_mapping']
else:
mapping = None
model.seg_mapping = mapping
model = torch.nn.DataParallel(model, device_ids=_run.config['device_id'])
model = model.cuda()
return evaluate(dataloaders, model, epoch, keep=True)
def evaluate(dataloaders, model, epoch, keep=False):
import utils
import shutil
scores = {}
model = model.eval()
file_logger = log.get_file_logger()
path_prefix = os.path.join(file_logger.get_log_dir(), 'results')
for dataloader in dataloaders:
dataset = dataloader.dataset
# this is a change in design,
# dataset creates evaluation
evaluation = dataset.get_evaluation(model)
print(evaluation.name)
folder_name = os.path.join(path_prefix, str(epoch))
utils.create_dir_recursive(folder_name)
# evaluation creates writer
with evaluation.get_writer(folder_name) as writer:
for idx, data in enumerate(dataloader):
data = evaluation.before_infere(data)
endpoints = model.module.infere(data)
data_to_write = evaluation.before_saving(endpoints, data)
writer.write(**data_to_write)
print("\rDone (%d/%d)" % (idx, len(dataloader)), flush=True, end='')
score = evaluation.score()
if evaluation.name in scores:
scores[evaluation.name].update(score)
else:
scores[evaluation.name] = score
print(score)
if not keep:
logger = log.get_logger()
logger.warning("deleting evaluation files in %s", path_prefix)
shutil.rmtree(path_prefix)
return scores
def test(dataloaders, model, epoch):
import utils
model = model.eval()
file_logger = log.get_file_logger()
path_prefix = os.path.join(file_logger.get_log_dir(), 'results')
for dataloader in dataloaders:
dataset = dataloader.dataset
# this is a change in design,
# dataset creates evaluation
test_set = dataset.get_test(model)
folder_name = os.path.join(path_prefix, str(epoch))
utils.create_dir_recursive(folder_name)
# evaluation creates writer
for idx, data in enumerate(dataloader):
test_set.write(data)
print("\rDone (%d/%d)" % (idx, len(dataloader)), flush=True, end='')
def test_config(_run):
pass
# logger = log.get_logger()
# cfg = _run.config
# set_device(cfg)
# train_cfg = cfg['training']
# checkpoint_frequency = train_cfg['checkpoint_frequency']
# restore_checkpoint_cfg = train_cfg['restore_checkpoint']
#
# dataloader_cfg = train_cfg['dataloader']
# model_cfg = train_cfg['model']
# scheduler_cfg = train_cfg['scheduler']
# optimizer_cfg = train_cfg['optimizer']
# loss_cfg = train_cfg['losses']
#
# device = _run.config['device']
# device_id = _run.config['device_id']
#
# dataloader = dataloader_builder.build(dataloader_cfg)
#
# model_cfg_appendix, optimizer_cfg_appendix, epoch, _ = restore_checkpoint(restore_checkpoint_cfg)
# model_cfg.update(model_cfg_appendix)
# optimizer_cfg.update(optimizer_cfg_appendix)
#
# def overwrite(to_overwrite, dic):
# to_overwrite.update(dic)
# return to_overwrite
#
# model_cfg = overwrite(dataloader.dataset.info, model_cfg)
# model = model_builder.build(model_cfg)
#
# loss = loss_builder.build(loss_cfg)
#
# parameters = list(model.parameters()) + list(loss.parameters())
# optimizer = optimizer_builder.build(optimizer_cfg, parameters)
#
#
# validation_cfg = cfg.get('validation')
# if validation_cfg is None:
# validation_dataloaders = None
# logger.warning("No validation given")
# else:
# validation_dataloaders = dataloader_builder.build(validation_cfg)
#
# if 'evaluation' in cfg:
# evaluation_cfg = cfg['evaluation']
# dataloaders, model_cfgs = evaluation_builder.build(evaluation_cfg)
# delete = evaluation_cfg['delete']
# else:
# logger.warning("No evaluation given")
#
# logger.info("Success")
def evaluate_experiment(_run):
log.initialize(_run)
new_cfg = _run.config
set_device(new_cfg)
experiment = new_cfg['experiment']
# quick fix for last saved model
num_models = new_cfg.get('last_x', 1)
model_paths = log.Logger.get_all_model_paths(experiment)
model_paths = model_paths[-num_models:]
cfg_path = log.Logger.get_cfg_path(experiment)
with open(cfg_path, 'r') as f:
cfg = json.load(f)
# overwrite cfg
# WARNING this means we are using a config that has not been
# filled with default values
cfg.update(new_cfg)
set_device(cfg)
# TODO
for model_path in model_paths:
score = evaluate_checkpoint_on(model_path, new_cfg['validation'], _run)
log_score(score, _run)
print(format_result(score))
return True
def show_options():
from models import get_all_models
from samplers import get_all_multi_samplers, get_all_single_samplers
print("models")
print((',\n').join(get_all_models()))
print("single samplers")
print((',\n').join(get_all_single_samplers()))
print("multi samplers")
print((',\n').join(get_all_multi_samplers()))
def format_result(result):
formatted = "Results:\n"
metrics = {}
for eval_name, score in result.items():
for metric, value in score.items():
metric_name = "{} @{}".format(metric, eval_name)
if metric_name in metrics:
metrics[metric_name].append(value)
else:
metrics[metric_name] = [value]
for metric_name, values in metrics.items():
try:
formatted += "{}: {}\n".format(metric_name, ','.join(list(values)))
except:
formatted += "{}: {}\n".format(metric_name, str(values))
return formatted
def log_result(results, _run):
for model, scores in results.items():
for eval_name, score in scores.items():
for metric, value in score.items():
metric_name = "{} @{}".format(metric, eval_name)
_run.log_scalar(metric_name, value)
def log_score(scores, _run, prefix="", step=None):
for eval_name, score in scores.items():
for metric, value in score.items():
metric_name = prefix + "{} @{}".format(metric, eval_name)
_run.log_scalar(metric_name, value, step)
def create_base_experiment(sacred_args, name=None): #path=Config.LOG_DIR, db_name=Config.DB_NAME):
ex = Experiment(name)
print(name)
ex.capture(set_device)
ex.main(main)
ex.capture(run_train)
ex.command(evaluate_experiment)
ex.command(test_config)
ex.command(show_options)
ex.command(evaluate_checkpoint)
# set default values
ex = config_builder.build(ex)
# set observers but check if maybe sacred will create them
# on its own
""" TODO
Problem is that we create the experiment before the command line is parsed by sacred.
But then we cannot set default values without using a shell script. Or
modify the file path for the logger."""
if Config.LOG_DIR is not None and '-F' not in sacred_args:
path = Config.LOG_DIR
if name is not None:
path = os.path.join(path, name)
file_ob = FileStorageObserver.create(path)
ex.observers.append(file_ob)
if Config.SLACK_WEBHOOK_URL != "":
slack_ob = SlackObserver(Config.SLACK_WEBHOOK_URL)
ex.observers.append(slack_ob)
if (Config.MONGO_DB_NAME is not None and Config.MONGO_DB_NAME != "") \
and '-m' not in sacred_args:
if Config.MONGO_USER != "":
mongo_ob = MongoObserver.create(username=Config.MONGO_USER, password=Config.MONGO_PW,
url=Config.MONGO_URL, authMechanism="SCRAM-SHA-256", db_name=Config.MONGO_DB_NAME)
else:
mongo_ob = MongoObserver.create(url=Config.MONGO_URL, db_name=Config.MONGO_DB_NAME)
ex.observers.append(mongo_ob)
return ex
if __name__ == "__main__":
parser = ArgumentParser()
# the name is set in run information
parser.add_argument('-n', default=None)
args, unknown_args = parser.parse_known_args()
ex = create_base_experiment(unknown_args, name=args.n)
ex.run_commandline()