-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlogger.py
486 lines (373 loc) · 13.9 KB
/
logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
import datetime
import logging
import logging.handlers
import torch
import re
from shutil import copyfile
import sys
import h5py
import os
from tensorboardX import SummaryWriter
from sacred.observers import FileStorageObserver
from sacred.utils import create_basic_stream_logger
TENSORBOARD_LOGGER = None
FILE_LOGGER = None
EXPERIMENT = None
def print_warning(*args, **kwargs):
print(*args, file=sys.stderr, **kwargs)
def get_data_shape(data):
if hasattr(data, 'shape'):
dshape = data.shape
elif type(data) == list or type(data) == tuple:
dshape = (len(data),)
else:
dshape = (1,)
return dshape
def var2num(x):
return x.data.cpu().numpy()
class MemoryHandler(logging.handlers.MemoryHandler):
def flush(self):
self.acquire()
try:
for record in self.buffer:
self.target.handle(record)
self.buffer = []
print('')
finally:
self.release()
class TensorboardLogger(object):
def __init__(self, path, ex_info):
self.writer = SummaryWriter(path)
self.entries = {}
ex_info["tensorflow"] = {}
ex_info["tensorflow"]["logdirs"] = []
path = os.path.abspath('tf_test')
ex_info["tensorflow"]["logdirs"].append(path)
def add_scalar(self, name, data):
if name in self.entries:
entry = self.entries[name]
entry.update(data)
else:
entry = ScalarEntry(name, data)
self.entries[name] = entry
self.writer.add_scalar(entry.name, entry.to_value(), entry.n)
def add_image(self, name, img, dataformat='CHW'):
if name in self.entries:
entry = self.entries[name]
entry.update(img)
else:
entry = ImageEntry(name, img)
self.entries[name] = entry
self.writer.add_image(entry.name, entry.to_value(), entry.n, dataformats=dataformat)
def add_images(self, name, imgs, dataformat='NCHW'):
#TODO: check if it works
if name in self.entries:
entry = self.entries[name]
entry.update(imgs)
else:
entry = ImageEntry(name, imgs)
self.entries[name] = entry
self.writer.add_images(entry.name, entry.to_value(), entry.n, dataformats=dataformat)
def add_histogram(self, name, hist):
raise NotImplementedError("add_histogram is not yet implemented")
def add_figure(self, name, fig):
raise NotImplementedError("add_figure is not yet implemented")
def add_video(self, name, hist):
raise NotImplementedError("add_video is not yet implemented")
def add_audio(self, name, hist):
raise NotImplementedError("add_audio is not yet implemented")
def add_text(self, name, hist):
raise NotImplementedError("add_text is not yet implemented")
def add_graph(self, name, hist):
raise NotImplementedError("add_graph is not yet implemented")
def add_embedding(self, name, hist):
raise NotImplementedError("add_embedding is not yet implemented")
def add_pr_curve(self, name, hist):
raise NotImplementedError("add_pr_curve is not yet implemented")
def close(self):
self.writer.close()
def sort_alpha_numeric(data):
def convert(text):
return int(text) if text.isdigit() else text.lower()
def alphanum_key(key):
return [convert(c) for c in re.split('([0-9]+)', key)]
return sorted(data, key=alphanum_key)
def get_all_files_matching(base_name, path):
reg_exp = re.sub("{.*}", "([0-9]+)", base_name)
# TODO glob?
files = os.listdir(path)
reg_exp = re.compile(reg_exp)
all_files = []
for file in files:
match = re.match(reg_exp, file)
if match is None:
continue
all_files.append(os.path.join(path, file))
return sort_alpha_numeric(all_files)
def get_last_file_number(base_name, path):
"""Gets the number of the last file
Returns -1 if no file matching the base_name was found in path.
"""
reg_exp = re.sub("{.*}", "([0-9]+)", base_name)
# TODO glob?
files = os.listdir(path)
reg_exp = re.compile(reg_exp)
max_value = -1
for file in files:
match = re.match(reg_exp, file)
if match is None:
continue
value = int(match.group(1))
if value > max_value:
max_value = value
return max_value
def get_new_numeric_name(base_name, path):
"""Finds all files with a given base name.
Returns a filename counting upwards.
base_name: contains curly brackets only once {}, place holder for a numeric value
path: Directory where files are checked.
"""
max_value = get_last_file_number(base_name, path)
return base_name.format(max_value + 1)
# TODO
# Converter function depending on where input is coming from
# Unified front , add_scalar, what about vectors?
# Log Level clean up, should be at every stage, but what if Backends add options
# possibility of merging file and console backends by logging level
# Scalar, running scalar, mean
# all have the save args capability
# separate Logging and summary
def create_path(path):
if os.path.isdir(path):
return path
if os.path.isabs(path):
# skip 'before' first slash
path_folders = path.split(os.path.sep)[1:]
base_path = os.path.sep
else:
path_folders = path.split(os.path.sep)
base_path = ""
for folder in path_folders:
base_path = os.path.join(base_path, folder)
if not os.path.isdir(base_path):
os.mkdir(base_path)
return path
def create_output(output_path, experiment):
return os.path.join(output_path, experiment)
def report_after_batch(_run, logger, batch_id, batch_len, acc_time, max_mem, loss_mean):
eta_seconds = acc_time * (batch_len / (batch_id + 1) - 1)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
logger.info("Loss: %f (%d/%d)", loss_mean, batch_id + 1, batch_len)
_run.info['batch_progress'] = "{:03f}% ({}/{})".format((batch_id + 1) / batch_len, batch_id + 1, batch_len)
_run.info['eta'] = eta_string
_run.info['speed'] = "{:.3f} it/s".format((batch_id + 1)/acc_time)
_run.info['memory'] = max_mem / 1024.0 / 1024.0
def report_after_epoch(_run, epoch, max_epoch):
_run.info['progress'] = "{:03f}% ({}/{})".format(
epoch / max_epoch, epoch, max_epoch)
def report_after_training(_run, total_time, max_epoch):
_run.info['total_training_time'] = str(datetime.timedelta(seconds=int(total_time)))
_run.info['avg_training_time'] = str(datetime.timedelta(seconds=int(total_time / max_epoch)))
class Logger(object):
model_name = "model_{}"
@staticmethod
def _make_model_name(iteration):
return Logger.model_name.format(iteration)
@staticmethod
def get_all_model_paths(path):
"""args:
path: path to experiment
"""
if os.path.isdir(path):
return get_all_files_matching(Logger.model_name, path)
raise FileNotFoundError("Experiment dir could not be found: {}".format(path))
@staticmethod
def get_cfg_path(path):
"""args:
path: path to experiment
"""
if os.path.isdir(path):
cfg_path = os.path.join(path, 'config.json')
if os.path.isfile(cfg_path):
return cfg_path
raise FileNotFoundError("Config file could not be found for {}".format(path))
def __init__(self, log_dir, origin="pytorch"):
self.log_dir = log_dir
create_path(self.log_dir)
print("Logging to %s" % self.log_dir)
self.origin = origin
def close(self):
pass
def save_description(self, model):
save_pytorch_description(model, self.log_dir)
def get_model_path(self, iteration):
path = os.path.join(self.log_dir, self._make_model_name(iteration))
if not os.path.isfile(path):
print("Checkpoint not found! {}".format(path))
return None
return path
def get_log_dir(self):
return self.log_dir
def save_checkpoint(self, model, optimizer, epoch, model_cfg):
path = os.path.join(self.log_dir, self._make_model_name(epoch))
console_logger = get_logger()
if os.path.isfile(path):
console_logger.info("File already exists under %s", path)
return None
console_logger.info("Saving model under %s", path)
checkpoint = {
'epoch': epoch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'model_cfg': model_cfg
}
torch.save(checkpoint, path)
return path
def save_model_file(self, model_name, model_path="models"):
"""Saves the model file to the directory."""
src = os.path.join(model_path, "{}.py".format(model_name))
dst = os.path.join(self.log_dir, "{}.py".format(model_name))
copyfile(src, dst)
import tempfile
class DummyLogger(Logger):
def __init__(self):
self._log_dir = None
pass
def write(self, name, data, dype=None):
pass
def add_scalar(self, name, data):
pass
def add_image(self, name, data, dataformat=''):
pass
def add_images(self, name, data, dataformat=''):
pass
def save_checkpoint(self, *args):
return None
def close(self):
pass
@property
def log_dir(self):
if self._log_dir is None:
self._log_dir = tempfile.mkdtemp()
return self._log_dir
class H5Logger(Logger):
DEFAULT_SIZE = 100
LOG_FILE = "log_{}.h5"
def __init__(self, *args):
super().__init__(*args)
log_file_name = get_new_numeric_name(self.LOG_FILE, self.log_dir)
self.handle = h5py.File(os.path.join(self.log_dir, log_file_name), 'w')
self.columns = {}
def write(self, name, data, dtype=None):
if name not in self.columns:
if dtype == None:
dtype = data.dtype
dshape = get_data_shape(data)
maxshape = tuple([None] + list(dshape))
shape = tuple([self.DEFAULT_SIZE] + list(dshape))
dataset = self.handle.create_dataset(name, shape=shape, maxshape=maxshape,
dtype=dtype)
position = 0
self.columns[name] = [dataset, position, self.DEFAULT_SIZE] # dataset handle, position, maxsize
else:
dataset, position, maxsize = self.columns[name]
# position starts at 0
if position + 1 > maxsize:
# increase dataset by max_size
maxsize = maxsize + self.DEFAULT_SIZE
dshape = get_data_shape(data)
shape = tuple([maxsize] + list(dshape))
dataset.resize(shape)
# print("Increased datset {} size to {}".format(name, maxsize))
self.columns[name][2] = maxsize
dataset[position] = data
self.columns[name][1] += 1
def close(self):
self.handle.close()
class Entry(object):
def __init__(self, name, every_n_steps=1):
self.every_n_steps = every_n_steps
self.name = name
self.n = 0
def update(self, *args):
self.n += 1
self._update(*args)
def to_value(self):
return self._to_value()
class ScalarEntry(Entry):
def __init__(self, name, value, template="{}: {:.4f}"):
super().__init__(name)
self.value = value
self.template = template
def _update(self, value):
self.value = value
def _to_value(self):
return self.value
def __str__(self):
if torch.Tensor is type(self.value):
value = var2num(self.value)
else:
value = self.value
return self.template.format(self.name, value)
class ImageEntry(Entry):
def __init__(self, name, img):
super().__init__(name)
self.img = img
def _update(self, img):
self.img = img
def _to_value(self):
return self.img
def get_sacred_file_path(ex):
"""Returns files path of sacred file storage observer.
Sacred run has to be already initialized!
Returns: file path
"""
if ex is None:
return None
for observer in ex.observers:
if isinstance(observer, FileStorageObserver):
return observer.dir
return None
def build_logger(type, name, run):
console_logger = get_logger()
console_logger.info("creating logger %s", name)
path = get_sacred_file_path(run)
if type == "dummy":
logger = DummyLogger()
elif path is None:
console_logger.info("Creating dummy logger. No path given.")
logger= DummyLogger()
elif type == "h5":
console_logger.info("Logging to %s", path)
logger = H5Logger(path)
elif type == "tensorboard":
logger = TensorboardLogger(path, run.experiment_info)
else:
raise NotImplemented("Type is not implemented: {}".format(type))
return logger
def initialize(run):
global FILE_LOGGER, TENSORBOARD_LOGGER, EXPERIMENT
EXPERIMENT = run
FILE_LOGGER = build_logger("h5", "h5", run)
TENSORBOARD_LOGGER = build_logger("tensorboard", "tensorboard", run)
def get_logger(name=None):
if EXPERIMENT is None:
print("default logger")
return logging.getLogger(name)
elif EXPERIMENT.run_logger is None:
EXPERIMENT.logger = create_basic_stream_logger()
return EXPERIMENT.run_logger
def get_file_logger():
global FILE_LOGGER
if FILE_LOGGER is None:
FILE_LOGGER = build_logger("dummy", "dummy", None)
return FILE_LOGGER
def get_tensorboard_logger():
global TENSORBOARD_LOGGER
if TENSORBOARD_LOGGER is None:
TENSORBOARD_LOGGER = build_logger("dummy", "dummy", None)
return TENSORBOARD_LOGGER
def save_pytorch_description(model, path):
path = os.path.join(path, "model.txt")
with open(path, 'w') as f:
print(model, file=f)