forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
429 lines (363 loc) · 13.7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
# @package utils
# Module caffe2.python.utils
from caffe2.proto import caffe2_pb2
from google.protobuf.message import DecodeError, Message
from google.protobuf import text_format
import sys
import collections
import copy
import functools
import numpy as np
OPTIMIZER_ITERATION_NAME = "optimizer_iteration"
OPTIMIZER_ITERATION_LR_NAME = "optimizer_iteration_lr"
ITERATION_MUTEX_NAME = "iteration_mutex"
ITERATION_MUTEX_LR_NAME = "iteration_mutex_lr"
def OpAlmostEqual(op_a, op_b, ignore_fields=None):
'''
Two ops are identical except for each field in the `ignore_fields`.
'''
ignore_fields = ignore_fields or []
if not isinstance(ignore_fields, list):
ignore_fields = [ignore_fields]
assert all(isinstance(f, str) for f in ignore_fields), (
'Expect each field is text type, but got {}'.format(ignore_fields))
def clean_op(op):
op = copy.deepcopy(op)
for field in ignore_fields:
if op.HasField(field):
op.ClearField(field)
return op
op_a = clean_op(op_a)
op_b = clean_op(op_b)
return op_a == op_b or str(op_a) == str(op_b)
def CaffeBlobToNumpyArray(blob):
if (blob.num != 0):
# old style caffe blob.
return (np.asarray(blob.data, dtype=np.float32)
.reshape(blob.num, blob.channels, blob.height, blob.width))
else:
# new style caffe blob.
return (np.asarray(blob.data, dtype=np.float32)
.reshape(blob.shape.dim))
def Caffe2TensorToNumpyArray(tensor):
if tensor.data_type == caffe2_pb2.TensorProto.FLOAT:
return np.asarray(
tensor.float_data, dtype=np.float32).reshape(tensor.dims)
elif tensor.data_type == caffe2_pb2.TensorProto.DOUBLE:
return np.asarray(
tensor.double_data, dtype=np.float64).reshape(tensor.dims)
elif tensor.data_type == caffe2_pb2.TensorProto.INT64:
return np.asarray(
tensor.int64_data, dtype=np.int64).reshape(tensor.dims)
elif tensor.data_type == caffe2_pb2.TensorProto.INT32:
return np.asarray(
tensor.int32_data, dtype=int).reshape(tensor.dims) # pb.INT32=>int use int32_data
elif tensor.data_type == caffe2_pb2.TensorProto.INT16:
return np.asarray(
tensor.int32_data, dtype=np.int16).reshape(tensor.dims) # pb.INT16=>np.int16 use int32_data
elif tensor.data_type == caffe2_pb2.TensorProto.UINT16:
return np.asarray(
tensor.int32_data, dtype=np.uint16).reshape(tensor.dims) # pb.UINT16=>np.uint16 use int32_data
elif tensor.data_type == caffe2_pb2.TensorProto.INT8:
return np.asarray(
tensor.int32_data, dtype=np.int8).reshape(tensor.dims) # pb.INT8=>np.int8 use int32_data
elif tensor.data_type == caffe2_pb2.TensorProto.UINT8:
return np.asarray(
tensor.int32_data, dtype=np.uint8).reshape(tensor.dims) # pb.UINT8=>np.uint8 use int32_data
else:
# TODO: complete the data type: bool, float16, byte, int64, string
raise RuntimeError(
"Tensor data type not supported yet: " + str(tensor.data_type))
def NumpyArrayToCaffe2Tensor(arr, name=None):
tensor = caffe2_pb2.TensorProto()
tensor.dims.extend(arr.shape)
if name:
tensor.name = name
if arr.dtype == np.float32:
tensor.data_type = caffe2_pb2.TensorProto.FLOAT
tensor.float_data.extend(list(arr.flatten().astype(float)))
elif arr.dtype == np.float64:
tensor.data_type = caffe2_pb2.TensorProto.DOUBLE
tensor.double_data.extend(list(arr.flatten().astype(np.float64)))
elif arr.dtype == np.int64:
tensor.data_type = caffe2_pb2.TensorProto.INT64
tensor.int64_data.extend(list(arr.flatten().astype(np.int64)))
elif arr.dtype == int or arr.dtype == np.int32:
tensor.data_type = caffe2_pb2.TensorProto.INT32
tensor.int32_data.extend(arr.flatten().astype(int).tolist())
elif arr.dtype == np.int16:
tensor.data_type = caffe2_pb2.TensorProto.INT16
tensor.int32_data.extend(list(arr.flatten().astype(np.int16))) # np.int16=>pb.INT16 use int32_data
elif arr.dtype == np.uint16:
tensor.data_type = caffe2_pb2.TensorProto.UINT16
tensor.int32_data.extend(list(arr.flatten().astype(np.uint16))) # np.uint16=>pb.UNIT16 use int32_data
elif arr.dtype == np.int8:
tensor.data_type = caffe2_pb2.TensorProto.INT8
tensor.int32_data.extend(list(arr.flatten().astype(np.int8))) # np.int8=>pb.INT8 use int32_data
elif arr.dtype == np.uint8:
tensor.data_type = caffe2_pb2.TensorProto.UINT8
tensor.int32_data.extend(list(arr.flatten().astype(np.uint8))) # np.uint8=>pb.UNIT8 use int32_data
else:
# TODO: complete the data type: bool, float16, byte, string
raise RuntimeError(
"Numpy data type not supported yet: " + str(arr.dtype))
return tensor
def MakeArgument(key, value):
"""Makes an argument based on the value type."""
argument = caffe2_pb2.Argument()
argument.name = key
iterable = isinstance(value, collections.abc.Iterable)
# Fast tracking common use case where a float32 array of tensor parameters
# needs to be serialized. The entire array is guaranteed to have the same
# dtype, so no per-element checking necessary and no need to convert each
# element separately.
if isinstance(value, np.ndarray) and value.dtype.type is np.float32:
argument.floats.extend(value.flatten().tolist())
return argument
if isinstance(value, np.ndarray):
value = value.flatten().tolist()
elif isinstance(value, np.generic):
# convert numpy scalar to native python type
value = np.asscalar(value)
if type(value) is float:
argument.f = value
elif type(value) in [bool, int]:
# We make a relaxation that a boolean variable will also be stored as
# int.
argument.i = value
elif isinstance(value, bytes):
argument.s = value
elif isinstance(value, str):
argument.s = value.encode('utf-8')
elif isinstance(value, caffe2_pb2.NetDef):
argument.n.CopyFrom(value)
elif isinstance(value, Message):
argument.s = value.SerializeToString()
elif iterable and all(type(v) in [float, np.float_] for v in value):
argument.floats.extend(
v.item() if type(v) is np.float_ else v for v in value
)
elif iterable and all(
type(v) in [bool, int, np.int_] for v in value
):
argument.ints.extend(
v.item() if type(v) is np.int_ else v for v in value
)
elif iterable and all(
isinstance(v, bytes) or isinstance(v, str) for v in value
):
argument.strings.extend(
v.encode('utf-8') if isinstance(v, str) else v
for v in value
)
elif iterable and all(isinstance(v, caffe2_pb2.NetDef) for v in value):
argument.nets.extend(value)
elif iterable and all(isinstance(v, Message) for v in value):
argument.strings.extend(v.SerializeToString() for v in value)
else:
if iterable:
raise ValueError(
"Unknown iterable argument type: key={} value={}, value "
"type={}[{}]".format(
key, value, type(value), set(type(v) for v in value)
)
)
else:
raise ValueError(
"Unknown argument type: key={} value={}, value type={}".format(
key, value, type(value)
)
)
return argument
def TryReadProtoWithClass(cls, s):
"""Reads a protobuffer with the given proto class.
Inputs:
cls: a protobuffer class.
s: a string of either binary or text protobuffer content.
Outputs:
proto: the protobuffer of cls
Throws:
google.protobuf.message.DecodeError: if we cannot decode the message.
"""
obj = cls()
try:
text_format.Parse(s, obj)
return obj
except (text_format.ParseError, UnicodeDecodeError):
obj.ParseFromString(s)
return obj
def GetContentFromProto(obj, function_map):
"""Gets a specific field from a protocol buffer that matches the given class
"""
for cls, func in function_map.items():
if type(obj) is cls:
return func(obj)
def GetContentFromProtoString(s, function_map):
for cls, func in function_map.items():
try:
obj = TryReadProtoWithClass(cls, s)
return func(obj)
except DecodeError:
continue
else:
raise DecodeError("Cannot find a fit protobuffer class.")
def ConvertProtoToBinary(proto_class, filename, out_filename):
"""Convert a text file of the given protobuf class to binary."""
with open(filename) as f:
proto = TryReadProtoWithClass(proto_class, f.read())
with open(out_filename, 'w') as fid:
fid.write(proto.SerializeToString())
def GetGPUMemoryUsageStats():
"""Get GPU memory usage stats from CUDAContext/HIPContext. This requires flag
--caffe2_gpu_memory_tracking to be enabled"""
from caffe2.python import workspace, core
workspace.RunOperatorOnce(
core.CreateOperator(
"GetGPUMemoryUsage",
[],
["____mem____"],
device_option=core.DeviceOption(workspace.GpuDeviceType, 0),
),
)
b = workspace.FetchBlob("____mem____")
return {
'total_by_gpu': b[0, :],
'max_by_gpu': b[1, :],
'total': np.sum(b[0, :]),
'max_total': np.sum(b[1, :])
}
def ResetBlobs(blobs):
from caffe2.python import workspace, core
workspace.RunOperatorOnce(
core.CreateOperator(
"Free",
list(blobs),
list(blobs),
device_option=core.DeviceOption(caffe2_pb2.CPU),
),
)
class DebugMode:
'''
This class allows to drop you into an interactive debugger
if there is an unhandled exception in your python script
Example of usage:
def main():
# your code here
pass
if __name__ == '__main__':
from caffe2.python.utils import DebugMode
DebugMode.run(main)
'''
@classmethod
def run(cls, func):
try:
return func()
except KeyboardInterrupt:
raise
except Exception:
import pdb
print(
'Entering interactive debugger. Type "bt" to print '
'the full stacktrace. Type "help" to see command listing.')
print(sys.exc_info()[1])
print
pdb.post_mortem()
sys.exit(1)
raise
def raiseIfNotEqual(a, b, msg):
if a != b:
raise Exception("{}. {} != {}".format(msg, a, b))
def debug(f):
'''
Use this method to decorate your function with DebugMode's functionality
Example:
@debug
def test_foo(self):
raise Exception("Bar")
'''
@functools.wraps(f)
def wrapper(*args, **kwargs):
def func():
return f(*args, **kwargs)
return DebugMode.run(func)
return wrapper
def BuildUniqueMutexIter(
init_net,
net,
iter=None,
iter_mutex=None,
iter_val=0
):
'''
Often, a mutex guarded iteration counter is needed. This function creates a
mutex iter in the net uniquely (if the iter already existing, it does
nothing)
This function returns the iter blob
'''
iter = iter if iter is not None else OPTIMIZER_ITERATION_NAME
iter_mutex = iter_mutex if iter_mutex is not None else ITERATION_MUTEX_NAME
from caffe2.python import core
if not init_net.BlobIsDefined(iter):
# Add training operators.
with core.DeviceScope(
core.DeviceOption(caffe2_pb2.CPU,
extra_info=["device_type_override:cpu"])
):
iteration = init_net.ConstantFill(
[],
iter,
shape=[1],
value=iter_val,
dtype=core.DataType.INT64,
)
iter_mutex = init_net.CreateMutex([], [iter_mutex])
net.AtomicIter([iter_mutex, iteration], [iteration])
else:
iteration = init_net.GetBlobRef(iter)
return iteration
def EnumClassKeyVals(cls):
# cls can only be derived from object
assert type(cls) == type
# Enum attribute keys are all capitalized and values are strings
enum = {}
for k in dir(cls):
if k == k.upper():
v = getattr(cls, k)
if isinstance(v, str):
assert v not in enum.values(), (
"Failed to resolve {} as Enum: "
"duplicate entries {}={}, {}={}".format(
cls, k, v, [key for key in enum if enum[key] == v][0], v
)
)
enum[k] = v
return enum
def ArgsToDict(args):
"""
Convert a list of arguments to a name, value dictionary. Assumes that
each argument has a name. Otherwise, the argument is skipped.
"""
ans = {}
for arg in args:
if not arg.HasField("name"):
continue
for d in arg.DESCRIPTOR.fields:
if d.name == "name":
continue
if d.label == d.LABEL_OPTIONAL and arg.HasField(d.name):
ans[arg.name] = getattr(arg, d.name)
break
elif d.label == d.LABEL_REPEATED:
list_ = getattr(arg, d.name)
if len(list_) > 0:
ans[arg.name] = list_
break
else:
ans[arg.name] = None
return ans
def NHWC2NCHW(tensor):
assert tensor.ndim >= 1
return tensor.transpose((0, tensor.ndim - 1) + tuple(range(1, tensor.ndim - 1)))
def NCHW2NHWC(tensor):
assert tensor.ndim >= 2
return tensor.transpose((0,) + tuple(range(2, tensor.ndim)) + (1,))