forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtoy_regression_test.py
64 lines (55 loc) · 2.76 KB
/
toy_regression_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import numpy as np
import unittest
from caffe2.python import core, workspace, test_util
class TestToyRegression(test_util.TestCase):
def testToyRegression(self):
"""Tests a toy regression end to end.
The test code carries a simple toy regression in the form
y = 2.0 x1 + 1.5 x2 + 0.5
by randomly generating gaussian inputs and calculating the ground
truth outputs in the net as well. It uses a standard SGD to then
train the parameters.
"""
workspace.ResetWorkspace()
init_net = core.Net("init")
W = init_net.UniformFill([], "W", shape=[1, 2], min=-1., max=1.)
B = init_net.ConstantFill([], "B", shape=[1], value=0.0)
W_gt = init_net.GivenTensorFill(
[], "W_gt", shape=[1, 2], values=[2.0, 1.5])
B_gt = init_net.GivenTensorFill([], "B_gt", shape=[1], values=[0.5])
LR = init_net.ConstantFill([], "LR", shape=[1], value=-0.1)
ONE = init_net.ConstantFill([], "ONE", shape=[1], value=1.)
ITER = init_net.ConstantFill([], "ITER", shape=[1], value=0,
dtype=core.DataType.INT64)
train_net = core.Net("train")
X = train_net.GaussianFill([], "X", shape=[64, 2], mean=0.0, std=1.0)
Y_gt = X.FC([W_gt, B_gt], "Y_gt")
Y_pred = X.FC([W, B], "Y_pred")
dist = train_net.SquaredL2Distance([Y_gt, Y_pred], "dist")
loss = dist.AveragedLoss([], ["loss"])
# Get gradients for all the computations above. Note that in fact we
# don't need to get the gradient the Y_gt computation, but we'll just
# leave it there. In many cases, I am expecting one to load X and Y
# from the disk, so there is really no operator that will calculate the
# Y_gt input.
input_to_grad = train_net.AddGradientOperators([loss], skip=2)
# updates
train_net.Iter(ITER, ITER)
train_net.LearningRate(ITER, "LR", base_lr=-0.1,
policy="step", stepsize=20, gamma=0.9)
train_net.WeightedSum([W, ONE, input_to_grad[str(W)], LR], W)
train_net.WeightedSum([B, ONE, input_to_grad[str(B)], LR], B)
for blob in [loss, W, B]:
train_net.Print(blob, [])
# the CPU part.
plan = core.Plan("toy_regression")
plan.AddStep(core.ExecutionStep("init", init_net))
plan.AddStep(core.ExecutionStep("train", train_net, 200))
workspace.RunPlan(plan)
W_result = workspace.FetchBlob("W")
B_result = workspace.FetchBlob("B")
np.testing.assert_array_almost_equal(W_result, [[2.0, 1.5]], decimal=2)
np.testing.assert_array_almost_equal(B_result, [0.5], decimal=2)
workspace.ResetWorkspace()
if __name__ == '__main__':
unittest.main()