forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparallelize_bmuf_distributed_test.py
294 lines (246 loc) · 9.68 KB
/
parallelize_bmuf_distributed_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
from multiprocessing import Process, Manager
import numpy as np
import unittest
import tempfile
import shutil
import logging
from hypothesis import given, settings
import hypothesis.strategies as st
from caffe2.python import workspace
log = logging.getLogger("parallelize_bmuf_distributed_test")
log.setLevel(logging.INFO)
def bmuf_process(filestore_dir, process_id, shared_results,
cpu_device=False, nesterov=False):
# We need to import caffe2 in every process to initialize CUDA independently.
from caffe2.python import core, cnn, data_parallel_model, dyndep
from caffe2.proto import caffe2_pb2
dyndep.InitOpsLibrary("@/caffe2/caffe2/distributed:file_store_handler_ops")
if not cpu_device:
if not workspace.has_gpu_support:
log.info('No GPU support test is Ignored.')
return
if workspace.NumGpuDevices() < 4:
log.info('Not enough GPU support, test IGNORED')
return
model = cnn.CNNModelHelper(
order="NHWC",
name="test"
)
if not cpu_device:
device_type = workspace.GpuDeviceType
device_prefix = "gpu"
else:
device_type = caffe2_pb2.CPU
device_prefix = "cpu"
devices = [0, 1] if process_id == 0 else [2, 3]
def _model_build_fun(model, loss_scale):
fc = model.FC(
"data", "fc", 16, 1, ("ConstantFill", {}), ("ConstantFill", {})
)
fc_fl = model.FlattenToVec(fc, "fc_fl")
sigm = model.Sigmoid(fc_fl, "sigm")
sq = model.SquaredL2Distance([sigm, "label"], "sq")
loss = model.AveragedLoss(sq, "loss")
loss = model.Scale(loss, scale=loss_scale)
# For testing explicit sync
model.param_init_net.UniformFill([], ["sync_num"], shape=[1])
return [loss]
def _input_builder_fun(model):
return None
def _param_update_fun(model):
ITER = model.Iter("ITER")
LR = model.net.LearningRate(
[ITER],
"LR",
base_lr=(-0.1),
policy="fixed",
)
ONE = model.param_init_net.ConstantFill(
[], "ONE", shape=[1], value=1.0,
)
for param in model.GetParams():
grad = model.param_to_grad[param]
model.WeightedSum([param, ONE, grad, LR], param)
def _generate_data(devices, process_id, device_type, device_prefix):
np.random.seed(26 + process_id * 10)
# Each run has same input, independent of number of gpus
batch_size = 64
for _ in range(0, 10):
full_data = np.random.rand(batch_size, 16)
full_labels = np.round(full_data[:, 0])
batch_per_device = batch_size // len(devices)
for (j, g) in enumerate(devices):
st = j * batch_per_device
en = st + batch_per_device
data = full_data[st:en, :].astype(np.float32)
labels = full_labels[st:en].astype(np.float32)
with core.DeviceScope(core.DeviceOption(device_type, g)):
workspace.FeedBlob("{}_{}/data".format(device_prefix, g), data)
workspace.FeedBlob("{}_{}/label".format(device_prefix, g), labels)
_generate_data(devices, process_id, device_type, device_prefix)
workspace.RunOperatorOnce(
core.CreateOperator(
"FileStoreHandlerCreate", [], ["store_handler"],
path=filestore_dir
)
)
rendezvous = dict(
kv_handler="store_handler",
shard_id=process_id,
num_shards=2,
engine="GLOO",
exit_nets=None
)
data_parallel_model.Parallelize_BMUF(
model,
_input_builder_fun,
_model_build_fun,
_param_update_fun,
devices=devices,
rendezvous=rendezvous,
nesterov=nesterov,
add_blobs_to_sync=["sync_num"],
cpu_device=cpu_device
)
data_parallel_model.RunInitNet(model)
def _device_pid(device, pid):
if pid == 1:
return device + 2
return device
np.testing.assert_equal(
workspace.FetchBlob("{}_{}/fc_w_v".format(
device_prefix, _device_pid(0, process_id))),
np.zeros(16).astype(np.float32).reshape(1, 16)
)
# Run the algorithm for one iteration to have non-zero params.
data_parallel_model.RunNet(model, 1)
# Save iteration momentum and post local update params
results = {}
v_b_ = workspace.FetchBlob(
"{}_{}/fc_b_v".format(device_prefix, _device_pid(0, process_id)))
v_w_ = workspace.FetchBlob(
"{}_{}/fc_w_v".format(device_prefix, _device_pid(0, process_id)))
results['v_b_'] = v_b_
results['v_w_'] = v_w_
workspace.RunNetOnce(model.net)
b_0_ = workspace.FetchBlob(
"{}_{}/fc_b".format(device_prefix, _device_pid(0, process_id)))
w_0_ = workspace.FetchBlob(
"{}_{}/fc_w".format(device_prefix, _device_pid(0, process_id)))
b_1_ = workspace.FetchBlob(
"{}_{}/fc_b".format(device_prefix, _device_pid(1, process_id)))
w_1_ = workspace.FetchBlob(
"{}_{}/fc_w".format(device_prefix, _device_pid(1, process_id)))
results['b_0_'] = b_0_
results['w_0_'] = w_0_
results['b_1_'] = b_1_
results['w_1_'] = w_1_
# Test sync
if process_id == 0:
workspace.FeedBlob(
device_prefix + "_0/sync_num",
np.array([2603]).astype(np.float32),
device_option=core.DeviceOption(device_type, 0))
# Compute block gradients.
b_g_ = workspace.FetchBlob(
"{}_{}/fc_b_g".format(device_prefix, _device_pid(0, process_id)))
w_g_ = workspace.FetchBlob(
"{}_{}/fc_w_g".format(device_prefix, _device_pid(0, process_id)))
results['b_g_'] = b_g_
results['w_g_'] = w_g_
workspace.RunNetOnce(model._global_model_param_updates_net)
# g_b = (b_0_ + b_1_) / 2 - b_g_
# g_w = (w_0_ + w_1_) / 2 - w_g_
v_b = workspace.FetchBlob(
"{}_{}/fc_b_v".format(device_prefix, _device_pid(0, process_id)))
v_w = workspace.FetchBlob(
"{}_{}/fc_w_v".format(device_prefix, _device_pid(0, process_id)))
w_g = workspace.FetchBlob(
"{}_{}/fc_w_g".format(device_prefix, _device_pid(0, process_id)))
b_g = workspace.FetchBlob(
"{}_{}/fc_b_g".format(device_prefix, _device_pid(0, process_id)))
w_0 = workspace.FetchBlob(
"{}_{}/fc_w".format(device_prefix, _device_pid(0, process_id)))
b_0 = workspace.FetchBlob(
"{}_{}/fc_b".format(device_prefix, _device_pid(0, process_id)))
w_1 = workspace.FetchBlob(
"{}_{}/fc_w".format(device_prefix, _device_pid(1, process_id)))
b_1 = workspace.FetchBlob(
"{}_{}/fc_b".format(device_prefix, _device_pid(1, process_id)))
results['v_b'] = v_b
results['v_w'] = v_w
results['w_g'] = w_g
results['b_g'] = b_g
results['w_0'] = w_0
results['b_0'] = b_0
results['w_1'] = w_1
results['b_1'] = b_1
# Test add_blobs_to_sync
for j in devices:
sync = workspace.FetchBlob(
device_prefix + "_{}/sync_num".format(j))[0]
results['sync_{}'.format(j)] = sync
shared_results[process_id] = results
class DistributedTest(unittest.TestCase):
@given(
cpu_device=st.booleans(),
nesterov=st.booleans()
)
@settings(deadline=10000)
def test_bmuf_distributed(self, cpu_device, nesterov):
if (not cpu_device) and workspace.has_hip_support:
log.info('Skipping the test on ROCm due to regression in ROCm3.5')
return
self._test_bmuf_distributed(cpu_device=cpu_device, nesterov=nesterov)
def _test_bmuf_distributed(self, cpu_device=False, nesterov=False):
processes = []
filestore_dir = tempfile.mkdtemp()
results = Manager().dict()
for idx in range(0, 2):
process = Process(
target=bmuf_process,
args=(filestore_dir, idx, results, cpu_device, nesterov)
)
processes.append(process)
process.start()
while len(processes) > 0:
process = processes.pop()
process.join()
shutil.rmtree(filestore_dir)
if len(results) == 0:
return
w_0 = results[0]['w_0']
w_1 = results[0]['w_1']
b_0 = results[0]['b_0']
b_1 = results[0]['b_1']
# Check parameters are in sync.
np.testing.assert_equal(w_0, w_1)
np.testing.assert_equal(w_0, results[1]['w_0'])
np.testing.assert_equal(w_0, results[1]['w_1'])
np.testing.assert_equal(b_0, b_1)
np.testing.assert_equal(b_0, results[1]['b_0'])
np.testing.assert_equal(b_0, results[1]['b_1'])
w_g_ = results[0]['w_g_']
b_g_ = results[0]['b_g_']
g_b = (results[0]['b_0_'] + results[1]['b_0_'] + results[0]['b_1_'] +
results[1]['b_1_']) / 4 - b_g_
g_w = (results[0]['w_0_'] + results[1]['w_0_'] + results[0]['w_1_'] +
results[1]['w_1_']) / 4 - w_g_
v_b_ = results[0]['v_b_']
v_b = results[0]['v_b']
v_w_ = results[0]['v_w_']
v_w = results[0]['v_w']
for pid in results.keys():
for k in results[pid].keys():
if k.startswith("sync_num"):
self.assertEqual(2603, results[pid][k])
# Check block gradients are correct.
np.testing.assert_almost_equal(v_b, 0.75 * v_b_ + g_b)
np.testing.assert_almost_equal(v_w, 0.75 * v_w_ + g_w)
# Check params update step
if nesterov:
np.testing.assert_equal(w_0, w_g_ + v_w - 0.75 * (v_w - v_w_))
np.testing.assert_equal(b_0, b_g_ + v_b - 0.75 * (v_b - v_b_))
else:
np.testing.assert_equal(w_0, w_g_ + v_w)
np.testing.assert_equal(b_0, b_g_ + v_b)