forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparallel_workers.py
294 lines (230 loc) · 7.47 KB
/
parallel_workers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
# @package parallel_workers
# Module caffe2.python.parallel_workers
'''
This module provides a python-land multithreaded mechanism for executing work.
Basic usage is as follows:
coordinator = parallel_workers.init_workers(
my_worker_fun,
worker_name="train"
)
...
coordinator.start()
First argument is the function to run in a loop on potentially multiple threads.
It has the call signature
worker_fun(worker_id)
Argument 'worker_name' is used to distinguish different workers,
such as workers processing train data or workers processing test data.
Optionally, one can define an "init function" that is called once before
threads start, and has call signature:
my_init_fun(worker_coordinator, global_coordinator)
Note that for data_parallel_models, init_workers will be called
for each GPU. Note that the 'coordinator' returned by the function is same
each time.
'''
import logging
import threading
import atexit
import time
import collections
import traceback
from abc import ABCMeta, abstractmethod
log = logging.getLogger("parallel_workers")
log.setLevel(logging.INFO)
LOG_INT_SECS = 60
def init_workers(
worker_fun,
num_worker_threads=2,
worker_name="train",
init_fun=None,
external_loggers=None,
shutdown_fun=None,
):
global global_coordinator
metrics = Metrics(external_loggers)
worker_ids = [
global_coordinator.get_new_worker_id()
for i in range(num_worker_threads)
]
# Create coordinator object
coordinator = WorkerCoordinator(
worker_name, worker_ids, init_fun, shutdown_fun=shutdown_fun)
# Launch fetch worker threads
workers = [
threading.Thread(
target=run_worker,
name="parallel_workers worker id {}".format(worker_id),
args=[coordinator,
Worker(coordinator, worker_id, worker_fun, metrics)],
) for worker_id in worker_ids
]
coordinator._workers = workers
global_coordinator.add(coordinator)
return global_coordinator
class Metrics:
def __init__(self, external_loggers):
self._metrics = collections.defaultdict(lambda: 0)
self._external_loggers = external_loggers
def reset_metrics(self):
self._metrics = collections.defaultdict(lambda: 0)
def log_metrics(self):
if not self._external_loggers:
return
for logger in self._external_loggers:
try:
logger.log(self._metrics)
except Exception as e:
print("Failed to call ExternalLogger: {}".format(e))
def put_metric(self, key, value, count=True):
self._metrics[key] += value
if count:
count_key = '{}_count'.format(key)
self._metrics[count_key] += 1
class State():
__metaclass__ = ABCMeta
@abstractmethod
def start(self):
pass
@abstractmethod
def stop(self):
pass
@abstractmethod
def cleanup(self):
pass
class WorkerCoordinator:
def __init__(
self, worker_name, worker_ids, init_fun,
state=None, shutdown_fun=None
):
self._active = True
self._started = False
self._workers = []
self._worker_name = worker_name
self._worker_ids = worker_ids
self._init_fun = init_fun
self._state = state
self._shutdown_fun = shutdown_fun
def is_active(self):
return self._active
def init(self, global_coordinator):
if self._init_fun and not self._started:
data_coordinator = self
self._init_fun(data_coordinator, global_coordinator)
def _start(self):
if self._started:
return
self._active = True
self._started = True
if self._state:
self._state.start()
for w in self._workers:
w.daemon = True
w.start()
def _stop(self, reason=None):
self._active = False
if reason is not None:
log.error("Data input failed due to an error: {}".format(reason))
if self._shutdown_fun and self._started:
self._shutdown_fun()
if self._state:
self._state.stop()
self._started = False
def _wait_finish(self, cleanup=None):
print("Wait for workers to die: {}".format(self._worker_name))
for w in self._workers:
if w != threading.current_thread():
w.join(5.0) # don't wait forever, thread may be blocked in i/o
success = True
for w in self._workers:
if w.is_alive():
print("Worker {} failed to close while waiting".format(w))
success = False
# Release memory for the scratch blobs
if success and self._state:
self._state.cleanup()
print("All workers terminated: {}".format(success))
return success
def get_worker_ids(self):
return self._worker_ids
class GlobalWorkerCoordinator:
def __init__(self):
self._coordinators = []
self._fetcher_id_seq = 0
self._worker_ids = []
self.register_shutdown_handler()
def add(self, coordinator):
self._coordinators.append(coordinator)
def get_new_worker_id(self):
worker_id = self._fetcher_id_seq
self._worker_ids.append(worker_id)
self._fetcher_id_seq += 1
return worker_id
def get_worker_ids(self):
return self._worker_ids
def start(self):
# run init and start in separate for loop to
# ensure init happens serially before threads are spawn.
for c in self._coordinators:
c.init(self)
for c in self._coordinators:
c._start()
def stop(self):
all_success = True
for c in self._coordinators:
c._stop()
for c in self._coordinators:
success = c._wait_finish()
all_success = all_success and success
self._coordinators = []
return all_success
def stop_coordinator(self, worker_name):
'''
Stop a specific coordinator
'''
for c in self._coordinators:
if c._worker_name == worker_name:
c._stop()
c._wait_finish()
self._coordinators = [
c for c in self._coordinators
if c._worker_name != worker_name
]
def register_shutdown_handler(self):
def cleanup():
self.stop()
atexit.register(cleanup)
class Worker:
def __init__(
self,
coordinator,
worker_id,
worker_fun=None,
metrics=None
):
self._coordinator = coordinator
self._worker_id = worker_id
self._worker_fun = worker_fun
self._metrics = metrics
def start(self):
self._start_time = time.time()
def run(self):
self._worker_fun(self._worker_id)
def handle_exception(self, e):
traceback.print_exc()
logging.exception("Exception in worker", e)
self._coordinator._stop("Exception in worker {}: {}".format(
self._worker_id, e
))
def finish(self):
self._metrics.put_metric(
'worker_time', time.time() - self._start_time)
self._metrics.log_metrics()
global_coordinator = GlobalWorkerCoordinator()
def run_worker(coordinator, worker):
while coordinator.is_active():
worker.start()
try:
worker.run()
except Exception as e:
worker.handle_exception(e)
finally:
worker.finish()