forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimizer_test_util.py
237 lines (201 loc) · 8.96 KB
/
optimizer_test_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
## @package optimizer_test_util
# Module caffe2.python.optimizer_test_util
import unittest
import numpy as np
from caffe2.python import brew, core, workspace, cnn, optimizer
from caffe2.python.modeling.initializers import (
Initializer, PseudoFP16Initializer)
from caffe2.python.model_helper import ModelHelper
class OptimizerTestBase:
"""
This is an abstract base class.
Don't inherit from unittest.TestCase, and don't name it 'Test*'.
Do, however, do these things in classes which inherit from this.
"""
def _createDense(self, dtype=core.DataType.FLOAT):
perfect_model = np.array([2, 6, 5, 0, 1]).astype(np.float32)
np.random.seed(123) # make test deterministic
numpy_dtype = np.float32 if dtype == core.DataType.FLOAT else np.float16
initializer = Initializer if dtype == core.DataType.FLOAT else \
PseudoFP16Initializer
data = np.random.randint(
2,
size=(20, perfect_model.size)).astype(numpy_dtype)
label = np.dot(data, perfect_model)[:, np.newaxis]
model = ModelHelper(name="test", arg_scope={'order': 'NCHW'})
out = brew.fc(
model,
'data', 'fc', perfect_model.size, 1, ('ConstantFill', {}),
('ConstantFill', {}), axis=0,
WeightInitializer=initializer, BiasInitializer=initializer
)
if dtype == core.DataType.FLOAT16:
out = model.HalfToFloat(out, out + "_fp32")
sq = model.SquaredL2Distance([out, 'label'])
loss = model.AveragedLoss(sq, "avg_loss")
grad_map = model.AddGradientOperators([loss])
self.assertIsInstance(grad_map['fc_w'], core.BlobReference)
return (model, perfect_model, data, label)
def testDense(self):
model, perfect_model, data, label = self._createDense()
optimizer = self.build_optimizer(model)
workspace.FeedBlob('data', data[0])
workspace.FeedBlob('label', label[0])
workspace.RunNetOnce(model.param_init_net)
workspace.CreateNet(model.net, True)
for _ in range(2000):
idx = np.random.randint(data.shape[0])
workspace.FeedBlob('data', data[idx])
workspace.FeedBlob('label', label[idx])
workspace.RunNet(model.net.Proto().name)
np.testing.assert_allclose(
perfect_model[np.newaxis, :],
workspace.FetchBlob('fc_w'),
atol=1e-2
)
self.check_optimizer(optimizer)
@unittest.skipIf(not workspace.has_gpu_support, "No gpu support")
def testGPUDense(self, dtype=core.DataType.FLOAT):
device_opt = core.DeviceOption(workspace.GpuDeviceType, 0)
with core.DeviceScope(device_opt):
model, _perfect_model, data, label = self._createDense(dtype)
if dtype == core.DataType.FLOAT16:
fc_fp32_for_host = model.HalfToFloat('fc', 'fc_fp32_for_host')
model.CopyGPUToCPU(fc_fp32_for_host, 'fc_cpu')
else:
model.CopyGPUToCPU('fc', 'fc_cpu')
workspace.FeedBlob('data', data[0])
workspace.FeedBlob('label', label[0])
# Add some CPU ops
brew.fc(model, 'fc_cpu', 'fc2', dim_in=1, dim_out=10, axis=0)
# Create optimizer in default device scope
self.build_optimizer(model)
if self._skip_gpu:
return
# Run net to see it does not crash
workspace.RunNetOnce(model.param_init_net)
workspace.CreateNet(model.net, True)
workspace.RunNet(model.net.Proto().name)
def testSparse(self):
# to test duplicated indices we assign two indices to each weight and
# thus each weight might count once or twice
DUPLICATION = 2
perfect_model = np.array([2, 6, 5, 0, 1]).astype(np.float32)
np.random.seed(123) # make test deterministic
data = np.random.randint(
2,
size=(20, perfect_model.size * DUPLICATION)).astype(np.float32)
label = np.dot(data, np.repeat(perfect_model, DUPLICATION))
model = cnn.CNNModelHelper("NCHW", name="test")
# imitate what model wrapper does
w = model.param_init_net.ConstantFill(
[], 'w', shape=[perfect_model.size], value=0.0)
model.params.append(w)
picked = model.net.Gather([w, 'indices'], 'gather')
out = model.ReduceFrontSum(picked, 'sum')
sq = model.SquaredL2Distance([out, 'label'])
loss = model.AveragedLoss(sq, "avg_loss")
grad_map = model.AddGradientOperators([loss])
self.assertIsInstance(grad_map['w'], core.GradientSlice)
optimizer = self.build_optimizer(model)
workspace.CreateBlob('indices')
workspace.CreateBlob('label')
for indices_type in [np.int32, np.int64]:
workspace.RunNetOnce(model.param_init_net)
workspace.CreateNet(model.net, True)
for _ in range(2000):
idx = np.random.randint(data.shape[0])
# transform into indices of binary features
indices = np.repeat(np.arange(perfect_model.size),
DUPLICATION)[data[idx] == 1]
if indices.size == 0:
continue
workspace.FeedBlob(
'indices',
indices.reshape((indices.size,)).astype(indices_type)
)
workspace.FeedBlob('label',
np.array(label[idx]).astype(np.float32))
workspace.RunNet(model.net.Proto().name)
np.testing.assert_allclose(
perfect_model,
workspace.FetchBlob('w'),
atol=1e-2
)
self.check_optimizer(optimizer)
class LRModificationTestBase:
"""
This is an abstract base class.
Don't inherit from unittest.TestCase, and don't name it 'Test*'.
Do, however, do these things in classes which inherit from this.
"""
def _gradient_ratio_reference(self, model, params, max_gradient_norm):
from caffe2.python import core
sum_squared_norms = 0.0
for param in params:
grad = (
model.param_to_grad[param]
if not isinstance(
model.param_to_grad[param],
core.GradientSlice,
) else model.param_to_grad[param].values
)
val = workspace.FetchBlob(grad)
sum_squared_norms += np.power(np.linalg.norm(val), 2.0)
global_norm = np.sqrt(sum_squared_norms)
clip_norm = max_gradient_norm
norm_ratio = clip_norm / np.maximum(clip_norm, global_norm)
return norm_ratio
def test_global_norm_based_gradient_clipping(self):
max_gradient_norm = 1.0
model, perfect_model, data, label = self._createDense()
opt = self.build_optimizer(model, max_gradient_norm=max_gradient_norm)
params = []
for param in model.GetParams(top_scope=True):
if param in model.param_to_grad:
if not isinstance(
model.param_to_grad[param],
core.GradientSlice,
):
params.append(param)
workspace.FeedBlob('data', data[0])
workspace.FeedBlob('label', label[0])
workspace.RunNetOnce(model.param_init_net)
workspace.CreateNet(model.net, True)
self.assertIsNotNone(opt._lr_multiplier)
# Run net once
idx = np.random.randint(data.shape[0])
workspace.FeedBlob('data', data[idx])
workspace.FeedBlob('label', label[idx])
workspace.RunNet(model.net.Proto().name)
reference = self._gradient_ratio_reference(
model,
params,
max_gradient_norm,
)
norm_ratio = workspace.FetchBlob(
'norm_clipped_grad_update/norm_ratio')
np.testing.assert_almost_equal(norm_ratio, reference)
self.assertTrue(
reference < 1.0, "Bad test, gradient not being scaled."
)
def test_lr_injection(self):
model, perfect_model, data, label = self._createDense()
opt = self.build_optimizer(
model, max_gradient_norm=1, allow_lr_injection=True
)
workspace.FeedBlob('data', data[0])
workspace.FeedBlob('label', label[0])
workspace.RunNetOnce(model.param_init_net)
workspace.CreateNet(model.net, True)
# Test LR injection initialized properly
self.assertIsNotNone(opt._lr_multiplier)
self.assertEqual(optimizer.get_lr_injection(), 1)
# Test that we're able to modify the value of the lr_injection
optimizer.set_lr_injection(0)
self.assertEqual(optimizer.get_lr_injection(), 0)
# Test that setting the lr_injector properly propagates to the
# lr_multiplier. Here, we have both lr_injector and norm_ratio that
# affect the lr_multiplier
workspace.RunNet(model.net.Proto().name)
self.assertEqual(workspace.FetchBlob('lr_multiplier'), 0)