-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgetBkgFromDump.py
242 lines (210 loc) · 9.94 KB
/
getBkgFromDump.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
from optparse import OptionParser
from forcelink import force_symlink
####
# Script for getting a background prediction pdf from the the dump made by dumpBkgPdfs
# It has an interactive mode where you can look at the pdfs in the dump
# as well as a mode where you can pick one without seeing the prompt.
# For help on the command line options, do
# python getBkgFromDump.py --help
#
# John Hakala 12/28/2016
####
from ROOT import *
def getPdfFromDump(category, inWorkspace, pdfName, makePlot, rooHistData, outSuffix, batch) :
if batch:
gROOT.SetBatch()
extLibs = ['libdiphotonsUtils', 'libHiggsAnalysisCombinedLimit', 'libdiphotonsRooUtils', 'libflashggFinalFitBackground']
for lib in extLibs:
gSystem.Load(lib)
rooWS = RooWorkspace("Vg")
print "going to try to get pdf with name %s from this workspace" % pdfName
pdfFromDump = inWorkspace.pdf(pdfName)
origName = pdfName
nBackground=RooRealVar("%s_norm" % origName, "nbkg", rooHistData.sumEntries())
varset = pdfFromDump.getVariables()
varIt = varset.iterator()
paramVar = varIt.Next()
var = inWorkspace.var("x")
#var.setRange("hackRange", 725., 3000.)
while paramVar:
print "looking at paramVar %s" % paramVar.GetName()
if paramVar.GetName() != var.GetName(): # don't remove the range from the "x" variable
inWorkspace.var(paramVar.GetName()).removeRange()
print "removed range from pdf %s with name %s" % (pdfName, paramVar.GetName())
print "parameter with name %s had initial value %f" % (paramVar.GetName(), paramVar.getValV())
paramVar = varIt.Next()
# it seems fitTo is recommended against... ?
#result = pdfFromDump.fitTo(rooHistData, RooFit.Minimizer("Minuit2", "minimize"), RooFit.Range(700, 4700), RooFit.Strategy(2), RooFit.SumW2Error(kTRUE), RooFit.Save(1), RooFit.Offset(kTRUE))
#result = pdfFromDump.fitTo(rooHistData, RooFit.Minimizer("Minuit2"),RooFit.SumW2Error(kTRUE), RooFit.Strategy(2), RooFit.Hesse(0), RooFit.Save(kTRUE) )
#result = pdfFromDump.fitTo(rooHistData, RooFit.Minimizer("Minuit2"),RooFit.SumW2Error(kTRUE), RooFit.Save())
status = 1
result = RooFitResult()
nll = RooNLLVar("nll", "nll", pdfFromDump, rooHistData)
#nll = RooNLLVar("nll", "nll", pdfFromDump, rooHistData, RooFit.Range("hackRange") )
minuit = RooMinimizer(nll)
minuit.setOffsetting(kTRUE)
minuit.setStrategy(2)
minuit.setEps(0.0001)
#minuit.minimize("GSL")
nTries = 0
rand = TRandom()
def doFit(refs):
maxTries = 10+refs["tries"]
while stat != 0 :
minuit.minimize("Minuit", "minimize")
refs["fitTest"] = refs["minimizer"].save("fitTest", "fitTest")
offset = refs["negLogLikelihood"].offset()
minnll_woffset = refs["fitTest"].minNll()
minnll = -offset-minnll_woffset
refs["stat"] = refs["fitTest"].status()
print "try %i:\n status: %i minnll_woffset: %f, minnll: %f, offset: %f" % (refs["tries"], refs["fitTest"].status(), minnll_woffset, minnll, offset)
refs["tries"] += 1
if refs["tries"] == maxTries or refs["stat"] == 0:
break
# if refs["stat"] == 0 and not refs["passedOnce"]:
# refs["passedOnce"] = True
# print "found minimum, will run improve"
# refs["stat"]=-1
# #for i in range(0, 5):
# # minuit.improve()
# # print "just ran improve, going to re-minimize"
# else:
# break
references = {}
references["passedOnce"] = False
references["negLogLikelihood"] = nll
references["fitTest"] = result
references["stat"] = int(status)
references["minimizer"] = minuit
references["tries"] = int(nTries)
doFit(references)
print "after %i tries, fit status was %i" % (references["tries"], references["stat"])
if references["stat"] == 0:
print "attempting to reset varIt"
varIt.Reset()
paramVar = varIt.Next()
while paramVar:
print "looking at paramVar %s" % paramVar.GetName()
if paramVar.GetName() != var.GetName(): # only print the actual shape variables
print "parameter with name %s had final value %f" % (paramVar.GetName(), paramVar.getValV())
paramVar.setConstant(kFALSE)
paramVar = varIt.Next()
else:
while references["stat"] != 0:
references["fitTest"].randomizePars() # try to get out of the danga zone
varIt.Reset()
paramVar = varIt.Next()
while paramVar:
print "resetting %s's value"%paramVar.GetName()
paramVar.setVal((rand.Rndm()-0.5)*10**(rand.Rndm()))
paramVar = varIt.Next()
print "retrying fit"
doFit(references) # TODO: test
if references["tries"] == 10000:
print "fit failed after %i tries" % references["tries"]
exit(0)
#references["fitTest"].Print()
var = inWorkspace.var("x")
frame = var.frame()
rooHistData.plotOn(frame)
### HERE: for error bands on background fit
pdfFromDump.plotOn(frame, RooFit.VisualizeError(references["fitTest"], 2, kFALSE), RooFit.FillColor(kOrange))
pdfFromDump.plotOn(frame, RooFit.VisualizeError(references["fitTest"], 1, kFALSE), RooFit.FillColor(kGreen+2))
pdfFromDump.plotOn(frame)
can = TCanvas()
can.cd()
frame.Draw()
#contourPlot = minuit.contour(inWorkspace.var("bkg_dijetsimple2_lin2"), inWorkspace.var("bkg_dijetsimple2_lin2"), 2.3/float(2) )
#raw_input("Press Enter to continue...")
if makePlot:
can.Print("fitFromFtest_%s_%s_%s.pdf" % (category, origName, outSuffix))
getattr(rooWS, 'import')(pdfFromDump, RooCmdArg())
getattr(rooWS, 'import')(rooHistData, RooCmdArg())
getattr(rooWS, 'import')(nBackground, RooCmdArg())
fitResultFile = TFile("fitRes_%s.root" % category, "RECREATE")
fitResultFile.cd()
rooWS.Write()
references["fitTest"].Write()
can.Write()
fitResultFile.Close()
return {"rooWS" : rooWS, "pdfFromDump": pdfFromDump, "origName" : origName}
if __name__ == "__main__" :
parser = OptionParser()
parser.add_option("-c", "--category" , dest="category",
help = "either 'btag' or 'antibtag'" )
parser.add_option("-n", "--pdfIndex" , dest="pdfIndex",
help = "the index of the desired pdf in the dump" )
parser.add_option("-i", "--inFileName" , dest="inFileName" , default="bkg_pdfs.root",
help = "the input root file with the workspace containing all pdfs" )
parser.add_option("-o", "--outSuffix" , dest="outSuffix" , default="tmp",
help = "the suffix for the of the output : blahblahPdf_OUTSUFFIX.root" )
parser.add_option("-a", "--altIndex" , dest="altIndex" ,
help = "the index of the alternative pdf in the dump (for bias studies)" )
parser.add_option("-b", action="store_true", dest="batch" , default=False,
help = "turn on batch mode" )
parser.add_option("-p", action="store_true", dest="makePlot" , default=False,
help = "toggle generating a plot in pdf form" )
parser.add_option("-l", action="store_true", dest="makeLink" , default=False,
help = "make symlink 'bkg_CATEGORY.root' to the output file" )
parser.add_option("-d", action="store_true", dest="linkData" , default=False,
help = "make symlink 'w_data_CATEGORY.root' to w_data in fitFiles dir" )
(options, args) = parser.parse_args()
if options.outSuffix is None:
parser.error("output histogram filename not given")
if options.category is None:
parser.error("please specify 'btag' or 'antibtag' as the -c option")
dataLinkName = "w_data_%s.root" % options.category
if options.linkData:
force_symlink("../../../../CMSSW_7_1_5/src/dataFiles/w_data_%s.root" % options.category, dataLinkName)
inFileName = options.inFileName
if not options.category in ["antibtag", "btag"]:
exit("something went wrong with the categories! \n%s" %
("... you picked '%s' but it has to be 'antibtag' or 'btag'" % options.category)
)
if options.batch:
gROOT.SetBatch()
inFile = TFile(inFileName)
dump = inFile.Get("Vg")
pdfList = dump.allPdfs()
nPdfs = pdfList.getSize()
pdfNames = []
pdfIt = pdfList.iterator()
for i in range(0, nPdfs):
pdfNames.append( pdfIt.Next().GetName() )
dataFile = TFile(dataLinkName)
dataWS = dataFile.Get("Vg")
dataRooHist = dataWS.data("data_obs")
if options.pdfIndex is None:
ans=True
while ans:
print "please pick a pdf:"
for i in range( 0, len(pdfNames) ):
print " %i. %s " % (i, pdfNames[i])
pdfIndex = raw_input()
if int(pdfIndex) in range(0, len(pdfNames)):
ans=False
else:
pdfIndex = options.pdfIndex
print "about to get background model:"
backgroundDict = getPdfFromDump(options.category, dump, pdfNames[int(pdfIndex)], options.makePlot, dataRooHist, options.outSuffix, options.batch)
bkgPdfFromDump = backgroundDict["pdfFromDump"]
backgroundWS = backgroundDict["rooWS"]
outFileName = "%s_%s_%s.root" % (backgroundDict["origName"], options.outSuffix, options.category)
outFile = TFile(outFileName, "RECREATE")
outFile.cd()
backgroundWS.Write()
if options.makeLink:
bkgLinkName = "bg_%s.root" % options.category
force_symlink(outFileName, bkgLinkName)
if options.altIndex is not None:
print "about to get alternate background model:"
altDict = getPdfFromDump(category, dump, pdfNames[int(options.altIndex)], options.makePlot, dataRooHist, options.outSuffix, options.batch)
altPdfFromDump = altDict["pdfFromDump"]
altWS = altDict["rooWS"]
altFileName = "%s_%s_%s.root" % (altDict["origName"], options.outSuffix, options.category)
altFile = TFile(altFileName, "RECREATE")
altFile.cd()
altWS.Write()
if options.makeLink:
altLinkName = "bg_alt_%s.root" % options.category
force_symlink(altFileName, altLinkName)