-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhmdb_datasets.py
293 lines (245 loc) · 10.3 KB
/
hmdb_datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import torch
import torch.utils.data as data_utl
import torchvision
import torchvision.models as models
import torch.utils.data as data_utl
import numpy as np
import matplotlib.pyplot as plt
import cv2
import pickle
import os
import random
from torchvision import datasets, transforms
import videotransforms
import visdom
import sys
import glob
class HMDB_splitter():
def __init__(self, path, split, stage, save_action_label=False):
self.path = path
self.split = split
self.stage = stage
self.save_action_label = save_action_label
def get_action_index(self):
self.action_label = {}
self.action_idx = []
self.train_video = {}
self.val_video = {}
self.test_video = {}
dirs = glob.glob(os.path.join(self.path, '*.txt'))
idx = 0
for line in dirs:
strs = line.split('\\')[1].split('_test_')
action, split_ver = strs[0], strs[1]
if action not in self.action_label.keys():
self.action_label[action] = idx
idx += 1
if split_ver == 'split' + self.split + '.txt':
self.action_idx.append(line)
if self.save_action_label:
with open('action_label_hmdb51.pickle', 'w') as f:
pickle.dump(self.action_idx) # there is some glob function error because of the folder name with brackets.
f.close()
def split_video(self):
self.get_action_index()
for videonamestxt in self.action_idx:
label = str(videonamestxt).split('_test_')[0].split('\\')[1]
with open(videonamestxt) as f:
content = f.readlines()
f.close()
for i in content:
video, mode = i.split(' ')[0], i.split(' ')[1]
if mode == '1':
self.train_video[video] = self.action_label[label]
elif mode == '2':
self.test_video[video] = self.action_label[label]
elif mode == '0':
self.val_video[video] = self.action_label[label]
print('>>> split mode : {}'.format(self.split))
print('>>> (training video, validation video, test video) : {}, {}, {}'.format(len(self.train_video),
len(self.val_video),
len(self.test_video)))
# self.train_video = self.name_HandstandPushups(train_video)
# self.test_video = self.name_HandstandPushups(test_video)
if self.stage == 'train':
return self.train_video
elif self.stage == 'test':
return self.test_video
elif self.stage == 'val':
return self.val_video
else:
print('There are two options : train, test, val')
def load_rgb_frames(image_dir, vid, start, num, total_frames):
vid = vid.split('.avi')[0]
frames = []
for i in range(start, start + num):
j = i
while j > total_frames:
j = j - total_frames
# try:
img = cv2.imread(os.path.join(image_dir, vid, 'frame' + str(j).zfill(6) + '.jpg'))[:, :, [2, 1, 0]]
w, h, c = img.shape
# except AttributeError:
# print('image is not on set, dir: ', os.path.join(image_dir, 'u', vid, 'frame' + str(j).zfill(6) + '.jpg'))
if w < 226 or h < 226:
d = 226. - min(w, h)
sc = 1 + d / min(w, h)
img = cv2.resize(img, dsize=(0, 0), fx=sc, fy=sc)
img = (img / 255.) * 2 - 1
frames.append(img)
return np.asarray(frames, dtype=np.float32)
def load_flow_frames(image_dir, vid, start, num, total_frames):
# image_dir : 'C:/UCF101/tvl1_flow'
# vid : 'v_ApplyEyeMakeup_g03_c01' ~
# start : starting point index
# num : number of video frames to get
# total_frames : length of that video clips
vid = vid.split('.avi')[0]
total_frames = total_frames-1 # The optical flow database of hmdb-51 is one less than rgb.
frames = []
for i in range(start, start + num):
j = i
while j > total_frames:
j = j - total_frames
try:
imgx = cv2.imread(os.path.join(image_dir, 'u', vid, 'frame' +
str(j).zfill(6) + '.jpg'), cv2.IMREAD_GRAYSCALE)
imgy = cv2.imread(os.path.join(image_dir, 'v', vid, 'frame' +
str(j).zfill(6) + '.jpg'), cv2.IMREAD_GRAYSCALE)
w, h = imgx.shape
except TypeError:
print('image is not on set, dir: ', os.path.join(image_dir, 'u', vid, 'frame' + str(j).zfill(6) + '.jpg'))
sys.exit()
except AttributeError:
print('image is not on set, dir: ', os.path.join(image_dir, 'u', vid, 'frame' + str(j).zfill(6) + '.jpg'))
sys.exit()
if w < 224 or h < 224:
d = 224. - min(w, h)
sc = 1 + d / min(w, h)
imgx = cv2.resize(imgx, dsize=(0, 0), fx=sc, fy=sc)
imgy = cv2.resize(imgy, dsize=(0, 0), fx=sc, fy=sc)
imgx = (imgx / 255.) * 2 - 1
imgy = (imgy / 255.) * 2 - 1
img = np.asarray([imgx, imgy]).transpose([1, 2, 0])
frames.append(img)
return np.asarray(frames, dtype=np.float32)
def video_to_tensor(pic):
"""Convert a ``numpy.ndarray`` to tensor.
Converts a numpy.ndarray (T x H x W x C)
to a torch.FloatTensor of shape (C x T x H x W)
Args:
pic (numpy.ndarray): Video to be converted to tensor.
Returns:
Tensor: Converted video.
"""
return torch.from_numpy(pic.transpose([3, 0, 1, 2]))
def make_dataset(root, data, num_classes=51):
# root : num of frames pickle -dir
# data : dictionary of hmdb-51 folder (from HMDB splitter.split_video)
# mode : 'opt' or 'rgb' - deleted
dataset = []
with open(root, 'rb') as file:
dic_frame = pickle.load(file)
file.close()
for vid in list(data.keys()):
num_frames = dic_frame[vid.split('.')[0]]
label = data[vid]
labels = np.zeros((num_classes, 64), np.float32) # 101, frame) size label generation
labels[label, :] = 1
dataset.append((vid, labels, num_frames))
return dataset
class HMDB(data_utl.Dataset):
def __init__(self, data_dir, split_path, split_mode, stage='train',
mode='rgb', pickle_dir='', transforms=None):
self.data_dir = data_dir
self.split_path = split_path
self.split_mode = split_mode
self.stage = stage
self.mode = mode
self.pickle_dir = pickle_dir
self.transforms = transforms
splitter = HMDB_splitter(path=split_path, split=split_mode, stage=stage)
self.database = splitter.split_video()
self.data = make_dataset(pickle_dir, self.database)
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is class_index of the target class.
"""
vid, label, nf = self.data[index]
if nf <= 64:
start_f = random.randint(1, nf)
else:
start_f = random.randint(1, nf-64)
if self.mode == 'rgb':
imgs = load_rgb_frames(self.data_dir, vid, start_f, 64, nf)
else:
imgs = load_flow_frames(self.data_dir, vid, start_f, 64, nf)
imgs = self.transforms(imgs)
label = torch.from_numpy(label)
# return torch.from_numpy(label)
# return video_to_tensor(imgs), label, 'v_' + vid
return video_to_tensor(imgs), label
def __len__(self):
return len(self.data)
def video_imshow(inp, labels, mode):
"""Imshow for 5 dim Tensor."""
if mode == 'rgb':
fig1 = plt.figure(figsize=(9, 9))
img = inp.squeeze().numpy().transpose((2, 3, 0, 1))
rows = 8
cols = 8
i = 1
for idx in range(img.shape[3]):
ax1 = fig1.add_subplot(rows, cols, i)
ax1.imshow(((img[:, :, :, idx]+1)*255/2).astype(np.uint8))
ax1.set_xlabel(str(i), size=6)
ax1.set_xticks([])
ax1.set_yticks([])
i = i + 1
plt.show()
else:
u = inp.squeeze().numpy()[0, :, :, :].squeeze().transpose((1, 2, 0))
v = inp.squeeze().numpy()[1, :, :, :].squeeze().transpose((1, 2, 0))
fig1 = plt.figure(figsize=(9,9))
fig2 = plt.figure(figsize=(9,9))
rows = 8
cols = 8
i = 1
for idx in range(u.shape[2]):
ax1 = fig1.add_subplot(rows, cols, i)
ax1.imshow(u[:, :, idx], cmap='gray')
ax1.set_xlabel(str(i), size=6)
ax1.set_xticks([])
ax1.set_yticks([])
# ax1.set_title(classes[labels.item()].split()[1])
ax2 = fig2.add_subplot(rows, cols, i)
ax2.imshow(v[:, :, idx], cmap='gray')
ax2.set_xlabel(str(i), size=6)
ax2.set_xticks([])
ax2.set_yticks([])
# ax2.set_title(classes[labels.item()].split()[1])
i = i + 1
plt.show()
if __name__ == '__main__':
split_path = 'HMDB-51_splits/'
split = '1'
root = 'hmdb_frame_counts.pickle'
rgb_dir = 'E:/Dropbox/LAB/DATASET/hmdb-51/jpegs_256'
opt_dir = 'E:/Dropbox/LAB/DATASET/hmdb-51/tvl1_flow'
train_transforms = transforms.Compose([videotransforms.RandomCrop(224),
videotransforms.RandomHorizontalFlip(), ])
train_dataset = HMDB(opt_dir, split_path, split, stage='train', mode='opt',
pickle_dir=root, transforms=train_transforms)
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=1, shuffle=False, num_workers=1,
pin_memory=True)
for data in train_dataloader:
x, Y = data
print(x.size(), Y.size())
break
# plot examples of opt mode
inputs, labels = next(iter(train_dataloader))
print(inputs.size())
video_imshow(inputs, labels, mode='opt')