forked from aws/aws-lc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinternal.h
405 lines (339 loc) · 16.9 KB
/
internal.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
#ifndef OPENSSL_HEADER_EVP_INTERNAL_H
#define OPENSSL_HEADER_EVP_INTERNAL_H
#include <openssl/base.h>
#include <openssl/rsa.h>
#include <openssl/hmac.h>
#include <openssl/evp.h>
#if defined(__cplusplus)
extern "C" {
#endif
// EVP_MD_CTX_FLAG_KEEP_PKEY_CTX ensures |md_ctx->pctx| is not freed up in
// |EVP_MD_CTX_cleanup|. Only intended for internal use when |*pctx| was set
// externally with |EVP_MD_CTX_set_pkey_ctx|.
#define EVP_MD_CTX_FLAG_KEEP_PKEY_CTX 0x0400
// EVP_MD_CTX_HMAC causes the |EVP_MD|'s |init| function not to
// be called, the |update| member not to be copied from the |EVP_MD| in
// |EVP_DigestInit_ex| and for |md_data| not to be initialised.
// This is an implementation detail of |EVP_PKEY_HMAC|.
#define EVP_MD_CTX_HMAC 0x0800
typedef struct evp_pkey_method_st EVP_PKEY_METHOD;
struct evp_pkey_asn1_method_st {
int pkey_id;
uint8_t oid[11];
uint8_t oid_len;
const char *pem_str;
const char *info;
// pub_decode decodes |params| and |key| as a SubjectPublicKeyInfo
// and writes the result into |out|. It returns one on success and zero on
// error. |params| is the AlgorithmIdentifier after the OBJECT IDENTIFIER
// type field, and |key| is the contents of the subjectPublicKey with the
// leading padding byte checked and removed. Although X.509 uses BIT STRINGs
// to represent SubjectPublicKeyInfo, every key type defined encodes the key
// as a byte string with the same conversion to BIT STRING.
int (*pub_decode)(EVP_PKEY *out, CBS *params, CBS *key);
// pub_encode encodes |key| as a SubjectPublicKeyInfo and appends the result
// to |out|. It returns one on success and zero on error.
int (*pub_encode)(CBB *out, const EVP_PKEY *key);
int (*pub_cmp)(const EVP_PKEY *a, const EVP_PKEY *b);
// priv_decode decodes |params| and |key| as a PrivateKeyInfo and writes the
// result into |out|. It returns one on success and zero on error. |params| is
// the AlgorithmIdentifier after the OBJECT IDENTIFIER type field, and |key|
// is the contents of the OCTET STRING privateKey field.
int (*priv_decode)(EVP_PKEY *out, CBS *params, CBS *key, CBS *pubkey);
// priv_encode encodes |key| as a PrivateKeyInfo and appends the result to
// |out|. It returns one on success and zero on error.
int (*priv_encode)(CBB *out, const EVP_PKEY *key);
// priv_encode_v2 encodes |key| as a OneAsymmetricKey (RFC 5958) and appends
// the result to |out|. It returns one on success and zero on error.
int (*priv_encode_v2)(CBB *out, const EVP_PKEY *key);
int (*set_priv_raw)(EVP_PKEY *pkey, const uint8_t *privkey, size_t privkey_len, const uint8_t *pubkey, size_t pubkey_len);
int (*set_pub_raw)(EVP_PKEY *pkey, const uint8_t *in, size_t len);
int (*get_priv_raw)(const EVP_PKEY *pkey, uint8_t *out, size_t *out_len);
int (*get_pub_raw)(const EVP_PKEY *pkey, uint8_t *out, size_t *out_len);
// pkey_opaque returns 1 if the |pk| is opaque. Opaque keys are backed by
// custom implementations which do not expose key material and parameters.
int (*pkey_opaque)(const EVP_PKEY *pk);
int (*pkey_size)(const EVP_PKEY *pk);
int (*pkey_bits)(const EVP_PKEY *pk);
int (*param_missing)(const EVP_PKEY *pk);
int (*param_copy)(EVP_PKEY *to, const EVP_PKEY *from);
int (*param_cmp)(const EVP_PKEY *a, const EVP_PKEY *b);
void (*pkey_free)(EVP_PKEY *pkey);
}; // EVP_PKEY_ASN1_METHOD
struct evp_pkey_st {
CRYPTO_refcount_t references;
// type contains one of the EVP_PKEY_* values or NID_undef and determines
// which element (if any) of the |pkey| union is valid.
int type;
union {
void *ptr;
RSA *rsa;
DSA *dsa;
DH *dh;
EC_KEY *ec;
KEM_KEY *kem_key;
PQDSA_KEY * pqdsa_key;
} pkey;
// ameth contains a pointer to a method table that contains many ASN.1
// methods for the key type.
const EVP_PKEY_ASN1_METHOD *ameth;
} /* EVP_PKEY */;
#define EVP_PKEY_OP_UNDEFINED 0
#define EVP_PKEY_OP_KEYGEN (1 << 2)
#define EVP_PKEY_OP_SIGN (1 << 3)
#define EVP_PKEY_OP_VERIFY (1 << 4)
#define EVP_PKEY_OP_VERIFYRECOVER (1 << 5)
#define EVP_PKEY_OP_ENCRYPT (1 << 6)
#define EVP_PKEY_OP_DECRYPT (1 << 7)
#define EVP_PKEY_OP_DERIVE (1 << 8)
#define EVP_PKEY_OP_PARAMGEN (1 << 9)
#define EVP_PKEY_OP_TYPE_SIG \
(EVP_PKEY_OP_SIGN | EVP_PKEY_OP_VERIFY | EVP_PKEY_OP_VERIFYRECOVER)
#define EVP_PKEY_OP_TYPE_CRYPT (EVP_PKEY_OP_ENCRYPT | EVP_PKEY_OP_DECRYPT)
#define EVP_PKEY_OP_TYPE_NOGEN \
(EVP_PKEY_OP_SIG | EVP_PKEY_OP_CRYPT | EVP_PKEY_OP_DERIVE)
#define EVP_PKEY_OP_TYPE_GEN (EVP_PKEY_OP_KEYGEN | EVP_PKEY_OP_PARAMGEN)
// EVP_PKEY_CTX_ctrl performs |cmd| on |ctx|. The |keytype| and |optype|
// arguments can be -1 to specify that any type and operation are acceptable,
// otherwise |keytype| must match the type of |ctx| and the bits of |optype|
// must intersect the operation flags set on |ctx|.
//
// The |p1| and |p2| arguments depend on the value of |cmd|.
//
// It returns one on success and zero on error.
OPENSSL_EXPORT int EVP_PKEY_CTX_ctrl(EVP_PKEY_CTX *ctx, int keytype, int optype,
int cmd, int p1, void *p2);
// EVP_PKEY_CTX_md sets the message digest type for a specific operation.
// This function is deprecated and should not be used in new code.
//
// |ctx| is the context to operate on.
// |optype| is the operation type (e.g., EVP_PKEY_OP_TYPE_SIG, EVP_PKEY_OP_KEYGEN).
// |cmd| is the specific command (e.g., EVP_PKEY_CTRL_MD).
// |md| is the name of the message digest algorithm to use.
//
// It returns 1 for success and 0 or a negative value for failure.
OPENSSL_EXPORT int EVP_PKEY_CTX_md(EVP_PKEY_CTX *ctx, int optype, int cmd, const char *md);
// EVP_RSA_PKEY_CTX_ctrl is a wrapper of |EVP_PKEY_CTX_ctrl|.
// Before calling |EVP_PKEY_CTX_ctrl|, a check is added to make sure
// the |ctx->pmeth->pkey_id| is either |EVP_PKEY_RSA| or |EVP_PKEY_RSA_PSS|.
int EVP_RSA_PKEY_CTX_ctrl(EVP_PKEY_CTX *ctx, int optype, int cmd, int p1, void *p2);
#define EVP_PKEY_CTRL_MD 1
#define EVP_PKEY_CTRL_GET_MD 2
// EVP_PKEY_CTRL_PEER_KEY is called with different values of |p1|:
// 0: Is called from |EVP_PKEY_derive_set_peer| and |p2| contains a peer key.
// If the return value is <= 0, the key is rejected.
// 1: Is called at the end of |EVP_PKEY_derive_set_peer| and |p2| contains a
// peer key. If the return value is <= 0, the key is rejected.
// 2: Is called with |p2| == NULL to test whether the peer's key was used.
// (EC)DH always return one in this case.
// 3: Is called with |p2| == NULL to set whether the peer's key was used.
// (EC)DH always return one in this case. This was only used for GOST.
#define EVP_PKEY_CTRL_PEER_KEY 3
// EVP_PKEY_ALG_CTRL is the base value from which key-type specific ctrl
// commands are numbered.
#define EVP_PKEY_ALG_CTRL 0x1000
#define EVP_PKEY_CTRL_RSA_PADDING (EVP_PKEY_ALG_CTRL + 1)
#define EVP_PKEY_CTRL_GET_RSA_PADDING (EVP_PKEY_ALG_CTRL + 2)
#define EVP_PKEY_CTRL_RSA_PSS_SALTLEN (EVP_PKEY_ALG_CTRL + 3)
#define EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN (EVP_PKEY_ALG_CTRL + 4)
#define EVP_PKEY_CTRL_RSA_KEYGEN_BITS (EVP_PKEY_ALG_CTRL + 5)
#define EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP (EVP_PKEY_ALG_CTRL + 6)
#define EVP_PKEY_CTRL_RSA_OAEP_MD (EVP_PKEY_ALG_CTRL + 7)
#define EVP_PKEY_CTRL_GET_RSA_OAEP_MD (EVP_PKEY_ALG_CTRL + 8)
#define EVP_PKEY_CTRL_RSA_MGF1_MD (EVP_PKEY_ALG_CTRL + 9)
#define EVP_PKEY_CTRL_GET_RSA_MGF1_MD (EVP_PKEY_ALG_CTRL + 10)
#define EVP_PKEY_CTRL_RSA_OAEP_LABEL (EVP_PKEY_ALG_CTRL + 11)
#define EVP_PKEY_CTRL_GET_RSA_OAEP_LABEL (EVP_PKEY_ALG_CTRL + 12)
#define EVP_PKEY_CTRL_EC_PARAMGEN_CURVE_NID (EVP_PKEY_ALG_CTRL + 13)
#define EVP_PKEY_CTRL_HKDF_MODE (EVP_PKEY_ALG_CTRL + 14)
#define EVP_PKEY_CTRL_HKDF_MD (EVP_PKEY_ALG_CTRL + 15)
#define EVP_PKEY_CTRL_HKDF_KEY (EVP_PKEY_ALG_CTRL + 16)
#define EVP_PKEY_CTRL_HKDF_SALT (EVP_PKEY_ALG_CTRL + 17)
#define EVP_PKEY_CTRL_HKDF_INFO (EVP_PKEY_ALG_CTRL + 18)
#define EVP_PKEY_CTRL_DH_PAD (EVP_PKEY_ALG_CTRL + 19)
#define EVP_PKEY_CTRL_DH_PARAMGEN_PRIME_LEN (EVP_PKEY_ALG_CTRL + 20)
#define EVP_PKEY_CTRL_DH_PARAMGEN_GENERATOR (EVP_PKEY_ALG_CTRL + 21)
#define EVP_PKEY_CTRL_SET_MAC_KEY (EVP_PKEY_ALG_CTRL + 22)
#define EVP_PKEY_CTRL_DSA_PARAMGEN_BITS (EVP_PKEY_ALG_CTRL + 23)
#define EVP_PKEY_CTRL_DSA_PARAMGEN_Q_BITS (EVP_PKEY_ALG_CTRL + 24)
#define EVP_PKEY_CTRL_DSA_PARAMGEN_MD (EVP_PKEY_ALG_CTRL + 25)
// EVP_PKEY_CTX_KEYGEN_INFO_COUNT is the maximum array length for
// |EVP_PKEY_CTX->keygen_info|. The array length corresponds to the number of
// arguments |BN_GENCB|'s callback function handles.
//
// |ctx->keygen_info| map to the following values in |BN_GENCB|:
// 1. |ctx->keygen_info[0]| -> |event|
// 2. |ctx->keygen_info[1]| -> |n|
#define EVP_PKEY_CTX_KEYGEN_INFO_COUNT 2
struct evp_pkey_ctx_st {
// Method associated with this operation
const EVP_PKEY_METHOD *pmeth;
// Engine that implements this method or NULL if builtin
ENGINE *engine;
// Key: may be NULL
EVP_PKEY *pkey;
// Peer key for key agreement, may be NULL
EVP_PKEY *peerkey;
// operation contains one of the |EVP_PKEY_OP_*| values.
int operation;
// Algorithm specific data
void *data;
// Application specific data used by the callback.
void *app_data;
// Callback and specific keygen data that is mapped to |BN_GENCB| for relevant
// implementations. This is only used for DSA, DH, and RSA in OpenSSL. AWS-LC
// only supports RSA as of now.
// See |EVP_PKEY_CTX_get_keygen_info| for more details.
EVP_PKEY_gen_cb *pkey_gencb;
int keygen_info[EVP_PKEY_CTX_KEYGEN_INFO_COUNT];
}; // EVP_PKEY_CTX
struct evp_pkey_method_st {
int pkey_id;
int (*init)(EVP_PKEY_CTX *ctx);
int (*copy)(EVP_PKEY_CTX *dst, EVP_PKEY_CTX *src);
void (*cleanup)(EVP_PKEY_CTX *ctx);
int (*keygen)(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey);
int (*sign_init)(EVP_PKEY_CTX *ctx);
int (*sign)(EVP_PKEY_CTX *ctx, uint8_t *sig, size_t *siglen,
const uint8_t *tbs, size_t tbslen);
int (*sign_message)(EVP_PKEY_CTX *ctx, uint8_t *sig, size_t *siglen,
const uint8_t *tbs, size_t tbslen);
int (*verify_init)(EVP_PKEY_CTX *ctx);
int (*verify)(EVP_PKEY_CTX *ctx, const uint8_t *sig, size_t siglen,
const uint8_t *tbs, size_t tbslen);
int (*verify_message)(EVP_PKEY_CTX *ctx, const uint8_t *sig, size_t siglen,
const uint8_t *tbs, size_t tbslen);
int (*verify_recover)(EVP_PKEY_CTX *ctx, uint8_t *out, size_t *out_len,
const uint8_t *sig, size_t sig_len);
int (*encrypt)(EVP_PKEY_CTX *ctx, uint8_t *out, size_t *outlen,
const uint8_t *in, size_t inlen);
int (*decrypt)(EVP_PKEY_CTX *ctx, uint8_t *out, size_t *outlen,
const uint8_t *in, size_t inlen);
int (*derive)(EVP_PKEY_CTX *ctx, uint8_t *key, size_t *keylen);
int (*paramgen)(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey);
int (*ctrl)(EVP_PKEY_CTX *ctx, int type, int p1, void *p2);
int (*ctrl_str) (EVP_PKEY_CTX *ctx, const char *type, const char *value);
// Encapsulate, encapsulate_deterministic, keygen_deterministic, and
// decapsulate are operations defined for a Key Encapsulation Mechanism (KEM).
int (*keygen_deterministic)(EVP_PKEY_CTX *ctx,
EVP_PKEY *pkey,
const uint8_t *seed,
size_t *seed_len);
int (*encapsulate_deterministic)(EVP_PKEY_CTX *ctx,
uint8_t *ciphertext,
size_t *ciphertext_len,
uint8_t *shared_secret,
size_t *shared_secret_len,
const uint8_t *seed,
size_t *seed_len);
int (*encapsulate)(EVP_PKEY_CTX *ctx,
uint8_t *ciphertext, size_t *ciphertext_len,
uint8_t *shared_secret, size_t *shared_secret_len);
int (*decapsulate)(EVP_PKEY_CTX *ctx,
uint8_t *shared_secret, size_t *shared_secret_len,
const uint8_t *ciphertext, size_t ciphertext_len);
}; // EVP_PKEY_METHOD
// used_for_hmac indicates if |ctx| is used specifically for the |EVP_PKEY_HMAC|
// operation.
int used_for_hmac(EVP_MD_CTX *ctx);
typedef struct {
uint8_t *key;
size_t key_len;
} HMAC_KEY;
typedef struct {
const EVP_MD *md; // MD for HMAC use.
HMAC_CTX ctx;
HMAC_KEY ktmp;
} HMAC_PKEY_CTX;
// HMAC_KEY_set copies provided key into hmac_key. It frees any existing key
// on hmac_key. It returns 1 on success, and 0 otherwise.
int HMAC_KEY_set(HMAC_KEY* hmac_key, const uint8_t* key, const size_t key_len);
// HMAC_KEY_copy allocates and a new |HMAC_KEY| with identical contents (internal use).
int HMAC_KEY_copy(HMAC_KEY* dest, HMAC_KEY* src);
// HMAC_KEY_new allocates and zeroizes a |HMAC_KEY| for internal use.
HMAC_KEY *HMAC_KEY_new(void);
typedef struct {
// key is the concatenation of the private seed and public key. It is stored
// as a single 64-bit array to allow passing to |ED25519_sign|. If
// |has_private| is false, the first 32 bytes are uninitialized and the public
// key is in the last 32 bytes.
uint8_t key[64];
char has_private;
} ED25519_KEY;
// evp_pkey_set_cb_translate translates |ctx|'s |pkey_gencb| and sets it as the
// callback function for |cb|.
void evp_pkey_set_cb_translate(BN_GENCB *cb, EVP_PKEY_CTX *ctx);
#define ED25519_PUBLIC_KEY_OFFSET 32
#define FIPS_EVP_PKEY_METHODS 8
#define NON_FIPS_EVP_PKEY_METHODS 3
#define ASN1_EVP_PKEY_METHODS 10
struct fips_evp_pkey_methods {
const EVP_PKEY_METHOD * methods[FIPS_EVP_PKEY_METHODS];
};
const EVP_PKEY_METHOD *EVP_PKEY_rsa_pkey_meth(void);
const EVP_PKEY_METHOD *EVP_PKEY_rsa_pss_pkey_meth(void);
const EVP_PKEY_METHOD *EVP_PKEY_ec_pkey_meth(void);
const EVP_PKEY_METHOD *EVP_PKEY_hkdf_pkey_meth(void);
const EVP_PKEY_METHOD *EVP_PKEY_hmac_pkey_meth(void);
const EVP_PKEY_METHOD *EVP_PKEY_ed25519_pkey_meth(void);
const EVP_PKEY_METHOD *EVP_PKEY_kem_pkey_meth(void);
const EVP_PKEY_METHOD *EVP_PKEY_pqdsa_pkey_meth(void);
#if defined(__cplusplus)
} // extern C
#endif
#endif // OPENSSL_HEADER_EVP_INTERNAL_H