-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy paththinning.cpp
157 lines (133 loc) · 4.68 KB
/
thinning.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#include "skeleton_filter.hpp"
#include <opencv2/imgproc/imgproc.hpp>
static void GuoHallIteration(cv::Mat& im, int iter)
{
cv::Mat marker = cv::Mat::zeros(im.size(), CV_8UC1);
for (int i = 1; i < im.rows-1; i++)
{
for (int j = 1; j < im.cols-1; j++)
{
uchar p2 = im.at<uchar>(i-1, j);
uchar p3 = im.at<uchar>(i-1, j+1);
uchar p4 = im.at<uchar>(i, j+1);
uchar p5 = im.at<uchar>(i+1, j+1);
uchar p6 = im.at<uchar>(i+1, j);
uchar p7 = im.at<uchar>(i+1, j-1);
uchar p8 = im.at<uchar>(i, j-1);
uchar p9 = im.at<uchar>(i-1, j-1);
int C = (!p2 & (p3 | p4)) + (!p4 & (p5 | p6)) +
(!p6 & (p7 | p8)) + (!p8 & (p9 | p2));
int N1 = (p9 | p2) + (p3 | p4) + (p5 | p6) + (p7 | p8);
int N2 = (p2 | p3) + (p4 | p5) + (p6 | p7) + (p8 | p9);
int N = N1 < N2 ? N1 : N2;
int m = iter == 0 ? ((p6 | p7 | !p9) & p8) : ((p2 | p3 | !p5) & p4);
if (C == 1 && (N >= 2 && N <= 3) & (m == 0))
marker.at<uchar>(i,j) = 1;
}
}
im &= ~marker;
}
void GuoHallThinning(const cv::Mat& src, cv::Mat& dst)
{
CV_Assert(CV_8UC1 == src.type());
dst = src / 255;
cv::Mat prev = cv::Mat::zeros(src.size(), CV_8UC1);
cv::Mat diff;
do
{
GuoHallIteration(dst, 0);
GuoHallIteration(dst, 1);
cv::absdiff(dst, prev, diff);
dst.copyTo(prev);
}
while (cv::countNonZero(diff) > 0);
dst *= 255;
}
//
// Place optimized version here
//
static void FormTable(std::vector<uchar>& markerTable)
{
for (int code = 0; code < 256; code++)
{
uchar p2 = code & 1;
uchar p3 = code & 2;
uchar p4 = code & 4;
uchar p5 = code & 8;
uchar p6 = code & 16;
uchar p7 = code & 32;
uchar p8 = code & 64;
uchar p9 = code & 128;
p2 == 0 ? p2 = 0 : p2 = 1;
p3 == 0 ? p3 = 0 : p3 = 1;
p4 == 0 ? p4 = 0 : p4 = 1;
p5 == 0 ? p5 = 0 : p5 = 1;
p6 == 0 ? p6 = 0 : p6 = 1;
p7 == 0 ? p7 = 0 : p7 = 1;
p8 == 0 ? p8 = 0 : p8 = 1;
p9 == 0 ? p9 = 0 : p9 = 1;
int C = (!p2 & (p3 | p4)) + (!p4 & (p5 | p6)) +
(!p6 & (p7 | p8)) + (!p8 & (p9 | p2));
int N1 = (p9 | p2) + (p3 | p4) + (p5 | p6) + (p7 | p8);
int N2 = (p2 | p3) + (p4 | p5) + (p6 | p7) + (p8 | p9);
int N = N1 < N2 ? N1 : N2;
int m = (p2 | p3 | !p5) & p4;
if (C == 1 && (N >= 2 && N <= 3) & (m == 0))
markerTable.push_back(1);
else
markerTable.push_back(0);
}
}
static void GuoHallIteration_optimized(cv::Mat& im, int iter, std::vector<uchar>& markerTable)
{
cv::Mat marker = cv::Mat::zeros(im.size(), CV_8UC1);
for (int i = 1; i < im.rows-1; i++)
{
for (int j = 1; j < im.cols-1; j++)
{
uchar p2 = im.at<uchar>(i-1, j);
uchar p3 = im.at<uchar>(i-1, j+1);
uchar p4 = im.at<uchar>(i, j+1);
uchar p5 = im.at<uchar>(i+1, j+1);
uchar p6 = im.at<uchar>(i+1, j);
uchar p7 = im.at<uchar>(i+1, j-1);
uchar p8 = im.at<uchar>(i, j-1);
uchar p9 = im.at<uchar>(i-1, j-1);
int C = (!p2 & (p3 | p4)) + (!p4 & (p5 | p6)) +
(!p6 & (p7 | p8)) + (!p8 & (p9 | p2));
int N1 = (p9 | p2) + (p3 | p4) + (p5 | p6) + (p7 | p8);
int N2 = (p2 | p3) + (p4 | p5) + (p6 | p7) + (p8 | p9);
int N = N1 < N2 ? N1 : N2;
int m = iter == 0 ? ((p6 | p7 | !p9) & p8) : ((p2 | p3 | !p5) & p4);
if (C == 1 && (N >= 2 && N <= 3) & (m == 0))
marker.at<uchar>(i,j) = 1;
}
}
im &= ~marker;
}
void GuoHallThinning_optimized(const cv::Mat& src, cv::Mat& dst)
{
CV_Assert(CV_8UC1 == src.type());
dst = src / 255;
cv::Mat prev = cv::Mat::zeros(src.size(), CV_8UC1);
cv::Mat diff;
do
{
GuoHallIteration(dst, 0);
GuoHallIteration(dst, 1);
cv::absdiff(dst, prev, diff);
dst.copyTo(prev);
}
while (cv::countNonZero(diff) > 0);
dst *= 255;
}
//
// Sample performance report
//
// Name of Test base 1 2 1 2
// vs vs
// base base
// (x-factor) (x-factor)
// Thinning::Size_Only::640x480 333.442 ms 216.775 ms 142.484 ms 1.54 2.34
// Thinning::Size_Only::1280x720 822.569 ms 468.958 ms 359.877 ms 1.75 2.29
// Thinning::Size_Only::1920x1080 2438.715 ms 1402.072 ms 1126.428 ms 1.74 2.16