-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
415 lines (383 loc) · 18.6 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="description"
content="StawGAN: Structural-Aware Generative Adversarial Networks for Infrared Image Translation.">
<meta name="keywords" content="Nerfies, D-NeRF, NeRF">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>StawGAN: Structural-Aware Generative Adversarial Networks for Infrared Image Translation</title>
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro"
rel="stylesheet">
<link rel="stylesheet" href="./static/css/bulma.min.css">
<link rel="stylesheet" href="./static/css/bulma-carousel.min.css">
<link rel="stylesheet" href="./static/css/bulma-slider.min.css">
<link rel="stylesheet" href="./static/css/fontawesome.all.min.css">
<link rel="stylesheet"
href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
<link rel="stylesheet" href="./static/css/index.css">
<link rel="icon" href="./static/images/favicon.svg">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<script defer src="./static/js/fontawesome.all.min.js"></script>
<script src="./static/js/bulma-carousel.min.js"></script>
<script src="./static/js/bulma-slider.min.js"></script>
<script src="./static/js/index.js"></script>
</head>
<body>
<nav class="navbar" role="navigation" aria-label="main navigation">
<div class="navbar-brand">
<a role="button" class="navbar-burger" aria-label="menu" aria-expanded="false">
<span aria-hidden="true"></span>
<span aria-hidden="true"></span>
<span aria-hidden="true"></span>
</a>
</div>
<div class="navbar-menu">
<div class="navbar-start" style="flex-grow: 1; justify-content: center;">
<a class="navbar-item" href="https://404.com">
<span class="icon">
<i class="fas fa-home"></i>
</span>
</a>
<div class="navbar-item has-dropdown is-hoverable">
<a class="navbar-link">
More Research
</a>
<div class="navbar-dropdown">
<a class="navbar-item" href="https://github.com/ispamm/HI2I">
Hypercomplex Image to Image Translation
</a>
<!-- <a class="navbar-item" href="https://nerfies.github.io">
Nerfies
</a>
<a class="navbar-item" href="https://latentfusion.github.io">
LatentFusion
</a>
<a class="navbar-item" href="https://photoshape.github.io">
PhotoShape
</a> -->
</div>
</div>
</div>
</div>
</nav>
<section class="hero">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<h1 class="title is-1 publication-title">StawGAN: Structural-Aware Generative Adversarial Networks for Infrared Image Translation</h1>
<div class="is-size-5 publication-authors">
<span class="author-block">
<a href="https://luigisigillo.github.io/">Luigi Sigillo</a><sup>1,2</sup>,</span>
<span class="author-block">
<a href="https://sites.google.com/uniroma1.it/eleonoragrassucci/home-page">Eleonora Grassucci</a><sup>1</sup>,</span>
<span class="author-block">
<a href="https://danilocomminiello.site.uniroma1.it/">Danilo Comminiello</a><sup>1</sup>,
</span>
</div>
<div class="is-size-5 publication-authors">
<span class="author-block"><sup>1</sup>Dept. of Information Engineering, Electronics and Telecom., Sapienza University of Rome, Italy,</span>
<span class="author-block"><sup>2</sup>Leonardo AI Labs</span>
</div>
<div class="column has-text-centered">
<div class="publication-links">
<!-- PDF Link. -->
<span class="link-block">
<a href="https://ieeexplore.ieee.org/Xplore/home.jsp"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-file-pdf"></i>
</span>
<span>Paper</span>
</a>
</span>
<span class="link-block">
<a href="https://arxiv.org/abs/2305.10882"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="ai ai-arxiv"></i>
</span>
<span>arXiv</span>
</a>
</span>
<!-- Video Link.
<span class="link-block">
<a href="https://www.youtube.com/watch?v=MrKrnHhk8IA"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-youtube"></i>
</span>
<span>Video</span>
</a>
</span> -->
<!-- Code Link. -->
<span class="link-block">
<a href="https://github.com/LuigiSigillo/StawGAN"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>Code</span>
</a>
</span>
<!-- Dataset Link. -->
<span class="link-block">
<a href="https://github.com/VisDrone/DroneVehicle"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="far fa-images"></i>
</span>
<span>Data</span>
</a>
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<!-- <section class="hero teaser">
<div class="container is-max-desktop">
<div class="hero-body">
<video id="teaser" autoplay muted loop playsinline height="100%">
<source src="./static/videos/teaser.mp4"
type="video/mp4">
</video>
<h2 class="subtitle has-text-centered">
<span class="dnerf">Nerfies</span> turns selfie videos from your phone into
free-viewpoint
portraits.
</h2>
</div>
</div>
</section> -->
<section class="hero is-light is-small">
<div class="hero-body">
<div class="container">
<figure style="grid-column: text">
<img src="static/images/StawGAN-architecture.png" style="width: 100%; margin-top: 1rem;display: block; margin-left: auto; margin-right: auto;"/>
<figcaption style="display:flex; justify-content: center"> Architecture of StawGAN. We show the part inside of the generator, to explore the shared connections between the two different flows. Indeed this is a translation from RGB to IR, but the same process holds for the contrary.</figcaption>
</figure>
</div>
</div>
</section>
<section class="section">
<div class="container is-max-desktop">
<!-- Abstract. -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Abstract</h2>
<div class="content has-text-justified">
<p>
This paper addresses the problem of translating night-time thermal infrared images, which are the most adopted image modalities to analyze night-time scenes, to daytime color images (NTIT2DC), which provide better perceptions of objects.
We introduce a novel model that focuses on enhancing the quality of the target generation without merely colorizing it.
</p>
<p>
The proposed structural aware (StawGAN) enables the translation of better-shaped and high-definition objects in the target domain.
We test our model on aerial images of the DroneVeichle dataset containing RGB-IR paired images.
The proposed approach produces a more accurate translation with respect to other state-of-the-art image translation models.
</p>
</div>
</div>
</div>
<!--/ Abstract. -->
</div>
</section>
<section class="section">
<div class="container is-max-desktop">
<figure style="grid-column: text">
<img src="static/images/StawGAN-results.png" style="width: 100%; margin-top: 1rem;display: block; margin-left: auto; margin-right: auto;"/>
<figcaption style="display:flex; justify-content: center"> Random samples of StawGAN image modality translations on the DroneVehicle dataset.
The first column refers to the original domain images, IR in the first row, and RGB in the second.
The corresponding translations in the RGB domain are in the first row and subsequent columns, while IR is in the second one.
Our approach produces better samples in both domains with respect to other state-of-the-art models. </figcaption> </figure>
</div>
</section>
<section class="section">
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-full-width">
<h2 class="title is-3">Results</h2>
<div class="content has-text-justified">
<p>
We compare our method with different models that reached state-of-the-art performance on other datasets.
We test pix2pixHD used for unpaired image-to-image translation, StarGAN v2 interesting for
the characteristics of extracting the style code from the scene and not injecting it with a fixed label,
PearlGAN introduced for this specific task of translation from IR to RGB and finally the original version of TarGAN.
shows the comparison on randomly chosen samples.
</p>
<p>
For the translation IR <span>→</span> RGB the results of PearlGAN are visually poor considering because of the green color of the buildings, supposing that it interprets them as vegetation.
Regarding the translation RGB <span>→</span> IR the results of StarGAN v2 are slightly blurred, mostly on the targets, PearlGAN does not translate correctly all the cars, and some of them are ghosted.
TarGAN and pix2pixHD samples are visually comparable to our results even though our method produces more realistic colors, but still, if we focus on the red boxes, we notice a concrete difference.
From RGB <span>→</span> IR pix2pixHD loses the details of the target car, while TarGAN shows black holes and paler.
</p>
<figure style="grid-column: text">
<img src="static/images/StawGAN-resultsIR.png" style="width: 100%; margin-top: 1rem;display: block; margin-left: auto; margin-right: auto;"/>
<figcaption style="display:flex; justify-content: center"> </figcaption>
</figure>
<p>
For the opposite translation, both the color and the shape of the StawGAN image are more appealing with respect to pix2pixHD.
Furthefrmore, TarGAN loses information on the targets, since the image is darker, making it difficult to distinguish the shape and the type of vehicle.
In the end, the proposed StawGAN produces high-definition samples with realistic colorization and well-shaped and defined targets.
Table reports objective metrics results for the image modality translation task. From this analysis, we can confirm that the FID of pix2pixHD is higher with respect to our approach that scores the second-best value, but our method surpasses it in all the other metrics.
</p>
<figure style="grid-column: text">
<img src="static/images/StawGAN-resultsRGB.png" style="width: 100%; margin-top: 1rem;display: block; margin-left: auto; margin-right: auto;"/>
<figcaption style="display:flex; justify-content: center"> </figcaption>
</figure>
<!-- <figure style="grid-column: text">
<img src="static/images/StawGAN-resultsRGB2.png" style="width: 100%; margin-top: 1rem;display: block; margin-left: auto; margin-right: auto;"/>
<figcaption style="display:flex; justify-content: center"> </figcaption>
</figure> -->
Those results confirm our theoretical statements, and prove the effectiveness of the proposed method with respect to the state of the art, clearly showing the significance of the proposed StawGAN.
</p>
<figure style="grid-column: text">
<img src="static/images/StawGAN-resultsRGB3.png" style="width: 100%; margin-top: 1rem;display: block; margin-left: auto; margin-right: auto;"/>
<figcaption style="display:flex; justify-content: center"> </figcaption>
</figure>
<style type="text/css">
.tg {border-collapse:collapse;border-spacing:0;}
.tg td{border-color:black;border-style:solid;border-width:1px;
font-family:Arial, sans-serif;font-size:14px;
overflow:hidden;padding:10px 5px;word-break:normal;}
.tg th{border-color:black;border-style:solid;border-width:1px;
font-family:Arial, sans-serif;font-size:14px;
overflow:hidden;padding:10px 5px;word-break:normal;}
.tg .tg-c3ow{border-color:inherit;text-align:center;
vertical-align:top}
.tg .tg-zw5y{border-color:inherit;text-align:center;text-decoration:underline;
vertical-align:top}
.tg .tg-7btt{border-color:inherit;font-weight:bold;text-align:center;
vertical-align:top}
</style>
<table class="tg">
<thead>
<tr>
<td class="tg-c3ow">Model</td>
<td class="tg-c3ow">FID</td>
<td class="tg-c3ow">IS</td>
<td class="tg-c3ow">PSNR</td>
<td class="tg-c3ow">SSIM</td>
</tr>
</thead>
<tbody>
<tr>
<td class="tg-c3ow">pix2pixHD</td>
<td class="tg-zw5y">0.0259</td>
<td class="tg-7btt">4.2223</td>
<td class="tg-c3ow">11.2101</td>
<td class="tg-c3ow">0.2125</td>
</tr>
<tr>
<td class="tg-c3ow">StarGAN v2</td>
<td class="tg-c3ow">0.4476</td>
<td class="tg-c3ow">2.7190</td>
<td class="tg-c3ow">11.2211</td>
<td class="tg-zw5y">0.2297</td>
</tr>
<tr>
<td class="tg-c3ow">PearlGAN</td>
<td class="tg-c3ow">0.0743</td>
<td class="tg-zw5y">3.9441</td>
<td class="tg-c3ow">10.8925</td>
<td class="tg-c3ow">0.2046</td>
</tr>
<tr>
<td class="tg-c3ow">TarGAN</td>
<td class="tg-c3ow">0.1177</td>
<td class="tg-c3ow">3.4285</td>
<td class="tg-zw5y">11.7085</td>
<td class="tg-c3ow">0.2382</td>
</tr>
<tr>
<td class="tg-c3ow">StawGAN</td>
<td class="tg-7btt">0.0119</td>
<td class="tg-c3ow">3.5163</td>
<td class="tg-7btt">11.8251</td>
<td class="tg-7btt">0.2453</td>
</tr>
</tbody>
</table>
<p>We perform also a secondary analysis on the segmentation capability of the proposed model with respect to the TarGAN, which is the only model from the one we compare that performs segmentation too. The comparison shows that our model gains better performance with respect to the TarGAN.
Since segmented images have in both domains large black zones, the translation task results easier to be accomplished.
Therefore, the segmentation metrics are evaluating mainly the generation of concrete target shapes.
We report objective metrics results for this task.</p>
<table class="tg">
<thead>
<tr>
<td class="tg-c3ow">Model</td>
<td class="tg-c3ow">DSC</td>
<td class="tg-c3ow">S-Score</td>
<td class="tg-c3ow">MAE</td>
</tr>
</thead>
<tbody>
<tr>
<td class="tg-c3ow">TarGAN</td>
<td class="tg-c3ow">79.34</td>
<td class="tg-c3ow">85.08</td>
<td class="tg-c3ow">0.0115</td>
</tr>
<tr>
<td class="tg-c3ow">StawGAN</td>
<td class="tg-7btt">84.27</td>
<td class="tg-7btt">88.61</td>
<td class="tg-7btt">0.0081</td>
</tr>
</tbody>
</table>
</div>
</div>
</div>
</div>
</section>
<section class="section" id="BibTeX">
<div class="container is-max-desktop content">
<h2 class="title">BibTeX</h2>
<pre><code>@ARTICLE{,
author={Sigillo, Luigi and Grassucci, Eleonora and Comminiello, Danilo},
journal={2023 IEEE International Symposium on Circuits and Systems (ISCAS)},
title={StawGAN: Structural-Aware Generative Adversarial Networks for Infrared Image Translation.},
year={2023},
volume={},
number={},
pages={},
doi={}
}</code></pre>
</div>
</section>
<footer class="footer">
<div class="container">
<div class="content has-text-centered">
<a class="icon-link"
href="./static/videos/nerfies_paper.pdf">
<i class="fas fa-file-pdf"></i>
</a>
<a class="icon-link" href="https://github.com/keunhong" class="external-link" disabled>
<i class="fab fa-github"></i>
</a>
</div>
<div class="columns is-centered">
<div class="column is-8">
<div class="content">
<p>
This website is licensed under a <a rel="license"
href="http://creativecommons.org/licenses/by-sa/4.0/">Creative
Commons Attribution-ShareAlike 4.0 International License</a>.
</p>
<p>
This means you are free to borrow the <a
href="https://github.com/nerfies/nerfies.github.io">source code</a> of this website,
we just ask that you link back to this page in the footer.
Please remember to remove the analytics code included in the header of the website which
you do not want on your website.
</p>
</div>
</div>
</div>
</div>
</footer>
</body>
</html>