-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
381 lines (265 loc) · 13.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import argparse
import itertools
import logging
import numpy as np
import yaml
import os.path
import torch
from torch import optim
import dill as pickle
from tqdm import tqdm
from base import get_dataset, get_predictions, Encoder
from continual_ai.cl_settings import MultiHeadTaskSolver, SingleIncrementalTaskSolver, MultiTask, SingleIncrementalTask
from continual_ai.cl_strategies import NaiveMethod, Container
from continual_ai.eval import Accuracy, BackwardTransfer, Evaluator, TotalAccuracy, F1, ExperimentsContainer, \
TimeMetric, LastBackwardTransfer, FinalAccuracy
from continual_ai.utils import ExperimentConfig
def my_custom_logger(logger_name, level=logging.INFO):
"""
Method to return a custom logger with the given name and level
"""
logger = logging.getLogger(logger_name)
logger.setLevel(level)
log_format = logging.Formatter("%(asctime)s %(message)s")
file_handler = logging.FileHandler(logger_name, mode='w')
file_handler.setFormatter(log_format)
logger.addHandler(file_handler)
return logger
parser = argparse.ArgumentParser(description='Main.')
parser.add_argument('path', action='store', help='The path of the experiment file to load.')
parser.add_argument('--cuda', '--gpu', action='store', default=-1, help='The gpu to use.', type=int)
args = parser.parse_args()
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
experiment_file = args.path
experiment_config = yaml.load(open(experiment_file), Loader=yaml.FullLoader)
config = ExperimentConfig(experiment_file)
########################################################################
base_experiment_path = config.train_config['save_path']
if not os.path.exists(base_experiment_path):
os.makedirs(base_experiment_path)
with open(os.path.join(base_experiment_path, 'config.yml'), 'w') as outfile:
yaml.dump(experiment_config, outfile, default_flow_style=False)
print(F'Config file loaded: {experiment_file}.')
print(F'with parameters:\n {config.__str__()}.')
final_train = ExperimentsContainer()
final_test = ExperimentsContainer()
seed_bar = tqdm(range(config.train_config['experiments']), desc='Experiment', leave=False)
for seed in seed_bar:
torch.manual_seed(seed)
np.random.seed(seed)
rs = np.random.RandomState(seed)
experiment_path = os.path.join(base_experiment_path, F'exp_{str(seed)}')
seed_bar.set_postfix({'Save path': experiment_path})
if config.train_config['load'] and os.path.exists(os.path.join(experiment_path, 'final_results.pkl')):
with open(os.path.join(experiment_path, 'final_results.pkl'), 'rb') as file:
results = pickle.load(file)
final_train.add_evaluator(results['train'])
final_test.add_evaluator(results['test'])
continue
plot_path = os.path.join(experiment_path, 'plots')
models_path = os.path.join(experiment_path, 'models')
results_path = os.path.join(experiment_path, 'results')
if not os.path.exists(experiment_path):
os.makedirs(experiment_path)
os.makedirs(models_path)
os.makedirs(plot_path)
os.makedirs(results_path)
logger = my_custom_logger(os.path.join(experiment_path, 'experiment.log'))
logger.info(F'Started experiment #{seed} with seed {seed}.')
logger.info(F'Save path: {experiment_path}.')
device = 'cpu'
if torch.cuda.is_available() and args.cuda >= 0 and args.cuda != 'cpu':
torch.cuda.set_device(args.cuda)
device = 'cuda'
dataset_loader, preprocessing, image_channels, image_shape, classes = \
get_dataset(config.cl_config['dataset'], device)
logger.info(F'Dataset {config.cl_config["dataset"]} loaded.')
labels_per_task = config.cl_config['label_per_task']
shuffle_labels = config.cl_config['shuffle_labels']
cl_problem = config.cl_config['cl_problem']
mn = config.cl_technique_config['name']
encoder = Encoder(config.cl_config['dataset'])
logger.info(F'Model created.')
logger.info(F'Continual Learning Strategy: {config.cl_technique_config["name"]}.')
if cl_problem == 'mt':
Cl_Dataset = MultiTask(dataset=dataset_loader, random_state=rs,
batch_size=config.train_config['batch_size'],
labels_per_task=labels_per_task, shuffle_labels=shuffle_labels)
solver = MultiHeadTaskSolver(input_dim=encoder.embedding_dim)
from continual_ai.cl_strategies.multi_task import ElasticWeightConsolidation, GradientEpisodicMemory, \
EmbeddingRegularization, LearningWithoutForgetting, PRER
elif cl_problem == 'sit':
Cl_Dataset = SingleIncrementalTask(dataset=dataset_loader, random_state=rs,
batch_size=config.train_config['batch_size'],
labels_per_task=labels_per_task, shuffle_labels=shuffle_labels)
solver = SingleIncrementalTaskSolver(input_dim=encoder.embedding_dim, flat_input=True)
from continual_ai.cl_strategies.single_incremental_task import ElasticWeightConsolidation, \
GradientEpisodicMemory, EmbeddingRegularization, LearningWithoutForgetting, PRER
else:
assert False
if mn == 'prer_proj' or mn == 'prer':
config.train_config['save'] = True
cl_method = PRER(encoder=encoder, config=config, classes=classes, device=device,
plot_dir=plot_path, random_state=rs, logger=logger)
elif mn == 'naive':
cl_method = NaiveMethod()
elif mn == 'ewc':
cl_method = ElasticWeightConsolidation(config=config, random_state=rs, logger=logger)
elif mn == 'gem':
cl_method = GradientEpisodicMemory(config=config, random_state=rs, logger=logger)
elif mn == 'er':
cl_method = EmbeddingRegularization(config=config, random_state=rs, logger=logger)
elif mn == 'lwf':
cl_method = LearningWithoutForgetting(config=config, random_state=rs, logger=logger)
else:
assert False
logger.info(F'Continual Learning dataset created.')
cl_method = cl_method.to(device)
encoder = encoder.to(device)
solver = solver.to(device)
cl_method = cl_method.to(device)
all_test_results = []
all_train_results = []
container = Container()
container.encoder = encoder
container.solver = solver
test_results = Evaluator(classification_metrics=[Accuracy(), F1()],
cl_metrics=[BackwardTransfer(), TotalAccuracy(), FinalAccuracy(), LastBackwardTransfer()],
other_metrics=TimeMetric())
train_results = Evaluator(classification_metrics=[Accuracy(), F1()],
cl_metrics=[BackwardTransfer(), TotalAccuracy(), FinalAccuracy(), LastBackwardTransfer()],
other_metrics=TimeMetric())
task_bar = tqdm(Cl_Dataset, desc='Task', leave=False)
for task in task_bar:
train_results.on_task_starts()
task_n = task.index
models_task_path = os.path.join(models_path, F'task_{task_n}.ptc')
test_results_path = os.path.join(results_path, F'train_{task_n}.pkl')
train_results_path = os.path.join(results_path, F'test_{task_n}.pkl')
logger.info(F'Training on task #{task_n} (# training samples {len(task)}) '
F'for {config.train_config["epochs"]} epochs')
logger.info(F'Task labels {task.task_labels}, original labels: {task.dataset_labels}')
container.current_task = task
solver.add_task(len(task.task_labels))
solver = solver.to(device)
solver.zero_grad()
encoder.zero_grad()
lr = config.train_config['lr']
opt = config.train_config['optimizer']
if opt == 'adam':
optimizer = optim.Adam(itertools.chain(solver.trainable_parameters(task_n), encoder.parameters()),
lr=lr)
elif opt == 'sgd':
optimizer = optim.SGD(itertools.chain(solver.trainable_parameters(task_n), encoder.parameters()),
lr=lr)
else:
assert False
container.optimizer = optimizer
cl_method.on_task_starts(container)
task.set_labels_type('task')
bets_res = 0
best_model = (None, None)
e_bar = tqdm(range(config.train_config['epochs']), leave=False, desc='Epochs')
for e in e_bar:
container.current_epoch = e
cl_method.on_epoch_starts(container)
if e == 0:
task.test()
y_true, y_pred = get_predictions(encoder, solver, task)
test_results.evaluate(y_true, y_pred, current_task=task.index, evaluated_task=task.index)
task.train()
y_true, y_pred = get_predictions(encoder, solver, task)
train_results.evaluate(y_true, y_pred, current_task=task.index, evaluated_task=task.index)
task.train()
task.set_labels_type('task')
for batch_idx, (indexes, x, y) in tqdm(enumerate(task), leave=False,
total=len(task) // config.train_config['batch_size']):
encoder.train()
solver.train()
container.current_batch = (indexes, x, y)
cl_method.on_batch_starts(container)
emb = encoder(x)
pred = solver(emb, task=task.index)
container.others_parameters['embeddings'] = emb
container.others_parameters['predictions'] = pred
class_ce = torch.nn.functional.cross_entropy(pred, y)
loss = class_ce
e_bar.set_postfix({'ce': class_ce.item()})
container.current_loss = loss
cl_method.before_gradient_calculation(container)
optimizer.zero_grad()
loss.backward()
cl_method.after_back_propagation(container)
optimizer.step()
cl_method.after_optimization_step(container)
cl_method.on_epoch_ends(container)
for t in [Cl_Dataset[t] for t in range(task.index + 1)]:
t.set_labels_type('task')
t.test()
y_true, y_pred = get_predictions(encoder, solver, t)
test_results.evaluate(y_true, y_pred, current_task=task.index, evaluated_task=t.index)
t.train()
y_true, y_pred = get_predictions(encoder, solver, t)
train_results.evaluate(y_true, y_pred, current_task=task.index, evaluated_task=t.index)
task_bar.set_postfix(test_results.cl_results()['Accuracy'])
if test_results.cl_results()['Accuracy']['TotalAccuracy'] > bets_res:
best_model = (solver.state_dict(), encoder.state_dict()) # decoder.state_dict())
bets_res = test_results.cl_results()['Accuracy']['TotalAccuracy']
solver.load_state_dict(best_model[0])
encoder.load_state_dict(best_model[1])
logger.info(F'Training on task #{task_n} over.\n')
logger.info(F'Test split results:')
for k in test_results.classification_metrics:
logger.info(F'{k}: \n{test_results.cl_results()[k]}\n{test_results.task_matrix[k]}')
logger.info(F'Train split results:')
for k in train_results.classification_metrics:
logger.info(F'{k}: \n{train_results.cl_results()[k]}\n{train_results.task_matrix[k]}')
otm = train_results.others_metrics_results().items()
if len(otm) > 0:
logger.info(F'Other metrics train:')
for k, v in otm:
logger.info(F'{k}: {v}')
otm = test_results.others_metrics_results().items()
if len(otm) > 0:
logger.info(F'Other metrics test:')
for k, v in otm:
logger.info(F'{k}: {v}')
logger.info(F'\n')
final_train.add_evaluator(train_results)
final_test.add_evaluator(test_results)
train_results.on_task_ends()
cl_method.on_task_ends(container)
if config.train_config['save']:
with open(test_results_path, 'wb') as file:
pickle.dump(test_results, file, protocol=pickle.HIGHEST_PROTOCOL)
with open(train_results_path, 'wb') as file:
pickle.dump(train_results, file, protocol=pickle.HIGHEST_PROTOCOL)
all_test_results.append(test_results)
all_train_results.append(train_results)
with open(os.path.join(models_path, F'task{task_n}_cl_strategy.cl'), 'wb') as file:
pickle.dump(cl_method, file, protocol=pickle.HIGHEST_PROTOCOL)
state = {'encoder': encoder, 'solver': solver, 'optimizer': optimizer}
torch.save(state, os.path.join(models_path, F'task{task_n}_state.pth'))
with open(os.path.join(experiment_path, 'final_results.pkl'), 'wb') as file:
pickle.dump({'train': train_results, 'test': test_results}, file,
protocol=pickle.HIGHEST_PROTOCOL)
logger.info('Training process complete.')
print('Final score')
print('Train score')
for k, v in final_train.cl_metrics().items():
print('{}: {}'.format(k, v))
print('\t{}'.format(final_train.others_metrics()))
print('Test score:')
for k, v in final_test.cl_metrics().items():
print('{}: {}'.format(k, v))
print('\t{}'.format(final_test.others_metrics()))
logger = my_custom_logger(os.path.join(base_experiment_path, 'final_score.log'))
logger.info('Train score:')
for k, v in final_train.cl_metrics().items():
logger.info('{}: {}'.format(k, v))
logger.info('\t{}'.format(final_train.others_metrics()))
logger.info('Test score:')
for k, v in final_test.cl_metrics().items():
logger.info('{}: {}'.format(k, v))
logger.info('\t{}'.format(final_test.others_metrics()))