-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathhelp.R
164 lines (142 loc) · 7.63 KB
/
help.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
###########################################################################################################
## Proteomics Visualization R Shiny App
##
##This software belongs to Biogen Inc. All right reserved.
##
##@file: help.R
##@Developer : Benbo Gao (benbo.gao@Biogen.com)
##@Date : 5/16/2018
##@version 1.0
###########################################################################################################
output$help_input <- renderText({
htmlstr <- "
<br>
<ul>
<li>Result Table: Statistics result, include log2 Fold Change, p value, p-values adjusted (Benjamini-Hochberg)</li>
<li>Data Table: Normalized data</li>
<li>Sample Table: sample group and comparison information</li>
<li>Protein Gene Names: protein accession number and gene symbol</li>
<li><a href=\"https://interactivereport.github.io/Quickomics/tutorial/docs/dataset-module.html#result-table\">Tutorial</a></li>
</ul>"
htmlstr
})
output$help_QC <- renderText({
htmlstr <- "
<br>
<ul>
<li>You can delete and add groups or samples. For some plots, you can re-arrange the order by delete, and add it back to particular position. This change will affect most plots</li>
<li>If there is save to output option, you can click to save in the session and output as pdf file </li>
<li>Dendrograms: 3 layouts: Tree, horizontal, circular. You can change tree cut number and font size</li>
<li>PCA Plot: you can select principal components (up to 5) to visualize. The size of the concentration ellipse in normal probability is 95%</li>
<li>PCA 3D Plot: This plot can be captured by print screen from keyboard</li>
<li>PCA 3D Interactive: you can save this plot from upper-right menu</li>
<li>Sample-sample Distance: the Euclidean distance computed from expression values of the samples</li>
<li>Box Plot: The box plot (a.k.a. box and whisker diagram) is a standardized way of displaying the distribution of data based on the five number summary: minimum, first quartile, median, third quartile, and maximum</li>
<li>CV Distribution: show the histogram of CV and median of CV for each group</li>
<li><a href=\"https://interactivereport.github.io/Quickomics/tutorial/docs/qc-plots-module.html#pca-plot\">Tutorial</a></li>
</ul>"
htmlstr
})
output$help_volcano <- renderText({
htmlstr <- "
<br>
<ul>
<li>Volcano Plot (Static): You can select the comparison group, fold change (not log2 FC) cutoff, p value cutoff. The selected proteins will be showed in red. Top 50 genes will be labeled </li>
<li>Volcano Plot (Interactive)</li>
<li>Data Output: selected genes data</li>
<li><a href=\"https://interactivereport.github.io/Quickomics/tutorial/docs/deg-module.html#volcano-plot-static\">Tutorial</a></li>
</ul>"
htmlstr
})
output$help_heatmap <- renderText({
htmlstr <- "
<br>
<ul>
<li>You can select all data,subset, upload genes to visualize.The uploaded gene should be gene names, accession number</li>
<li>If the selected gene or upload gene number is less than 50, it will show gene-accession names</li>
<li>Static Heatmap 1: created by using package 'ComplexHeatmap' </li>
<li>Static Heatmap 2: created by using package 'gplots'</li>
<li>Interactive Heatmap: created by using package 'heatmaply'<br>
This function is slow if you select large number of genes.</li>
<li>Major options: <br>
Apply Clustering: how the row and column dendrogram should be reordered<br>
Distance Metric: : function used to compute the distance (dissimilarity) between both rows and columns. <br>
Linkage Algorithm: methods of agglomerative hierarchical clustering<br>
Scale: If the values should be centered and scaled in either the row direction or the column direction, or none. </li>
<li><a href=\"https://interactivereport.github.io/Quickomics/tutorial/docs/heatmap-module.html#heatmap-module\">Tutorial</a></li>
</ul>"
htmlstr
})
output$help_expression <- renderText({
htmlstr <- "
<br>
<ul>
<li>Browsing: view all proteins pass the cutoff. </li>
<li>Searched Protein Expression: You can search multiple proteins to plot </li>
<li>Data Output: show the selected protein expression </li>
<li>Rank Abundance Curve: helps interpret the distribution of relative abundance and expression levels of a set of genes.</li>
<li>Options are straightforward </li>
<li><a href=\"https://interactivereport.github.io/Quickomics/tutorial/docs/expression-plot-module.html#expression-plot-module\">Tutorial</a></li>
</ul>"
htmlstr
})
output$help_geneset <- renderText({
htmlstr <- "
<br>
<ul>
<li>The datasets used are from <a href=\"http://software.broadinstitute.org/gsea/msigdb/collections.jsp\" target=\"_blank\"> Molecular Signatures Database (MSigDB)</a></li>
<li>Select genes for gene set enrichment analysis: by comparison, fold change, p value</li>
<li>Select interested dataset</li>
<li>Click one of the gene set, it will show the expression of genes in this dataset and the heatmap from all the studied groups </li>
<li>If the gene sets are KEGG pathway, it will label the gene as well relative expression on the KEGG pathway. Save pathway by right click </li>
<li><a href=\"https://interactivereport.github.io/Quickomics/tutorial/docs/gene-set-enrichment-module.html#gene-set-enrichment-module\">Tutorial</a></li>
</ul>"
htmlstr
})
output$help_pattern <- renderText({
htmlstr <- "
<br>
<ul>
<li>Clustering analysis to visualize the expresion in different groups</li>
<li>The selection of genes used clustering analysis is based on any comparison in this experiment</li>
<li>Cluster Mehtod: <a href=\"https://en.wikipedia.org/wiki/Fuzzy_clustering\" target=\"_blank\"> soft (fuzzy) clustering </a>,
<a href=\"https://en.wikipedia.org/wiki/K-means_clustering\" target=\"_blank\"> k-means</a>,
<a href=\"https://en.wikipedia.org/wiki/K-medoids\" target=\"_blank\"> partitioning around medoids (PAM)</a></li>
<li>program determined the optimal number of clusters</li>
<li>If the gene sets are KEGG pathway, it will label the gene as well relative expression on the KEGG pathway. Save pathway by right click </li>
<li><a href=\"https://interactivereport.github.io/Quickomics/tutorial/docs/pattern-clustering-module.html#pattern-clustering-module\">Tutorial</a></li>
</ul>"
htmlstr
})
output$help_network <- renderText({
htmlstr <- "
<br>
<ul>
<li>The co-expression network construction is based on protein-protein correlation matrix information. In order to speed up the response time, only keep correlation pairs with |r| > 0.6 </li>
<li>You can search genes to find out expression correlated genes</li>
<li>Two network visualization methods provided </li>
<li><a href=\"https://interactivereport.github.io/Quickomics/tutorial/docs/pattern-clustering-module.html#pattern-clustering-module\">Tutorial</a></li>
</ul>"
htmlstr
})
output$help_venn <- renderText({
htmlstr <- "
<br>
<ul>
<li>Used to generate venn diagram among different comparsions in the experiment</li>
<li>data output are intersection among different groups </li>
<li><a href=\"https://interactivereport.github.io/Quickomics/tutorial/docs/venn-diagram-module.html#venn-diagram-module\">Tutorial</a></li>
</ul>"
htmlstr
})
output$help_vennp <- renderText({
htmlstr <- "
<br>
<ul>
<li>Used to generate venn diagram among different experiments in the list</li>
<li>For different expriments, the samples maybe from different species, and used different database to search. Only gene names are used for intersection</li>
<li><a href=\"https://interactivereport.github.io/Quickomics/tutorial/docs/venn-diagram-module.html#venn-diagram-module\">Tutorial</a></li>
</ul>"
htmlstr
})
#