You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
* Remove deprecated models
* remove AC configs links and reference in datasets
* remove models usage in demos and tests
* remove missed files
* remove caffe2 to onnx script
* update ci requirements
* update known frameworks, restore some req
Copy file name to clipboardexpand all lines: data/datasets.md
+3-3
Original file line number
Diff line number
Diff line change
@@ -40,7 +40,7 @@ To use this dataset with OMZ tools, make sure `<DATASET_DIR>` contains the follo
40
40
41
41
### Datasets in dataset_definitions.yml
42
42
*`imagenet_1000_classes` used for evaluation models trained on ILSVRC 2012 dataset with 1000 classes. (model examples: [`alexnet`](../models/public/alexnet/README.md), [`vgg16`](../models/public/vgg16/README.md))
43
-
*`imagenet_1000_classes_2015` used for evaluation models trained on ILSVRC 2015 dataset with 1000 classes. (model examples: [`se-resnet-152`](../models/public/se-resnet-152/README.md), [`se-resnext-50`](../models/public/se-resnext-50/README.md))
43
+
*`imagenet_1000_classes_2015` used for evaluation models trained on ILSVRC 2015 dataset with 1000 classes. (model examples: [`se-resnet-50`](../models/public/se-resnet-50/README.md), [`se-resnext-50`](../models/public/se-resnext-50/README.md))
44
44
*`imagenet_1001_classes` used for evaluation models trained on ILSVRC 2012 dataset with 1001 classes (background label + original labels). (model examples: [`googlenet-v2-tf`](../models/public/googlenet-v2-tf/README.md), [`resnet-50-tf`](../models/public/resnet-50-tf/README.md))
45
45
46
46
## [Common Objects in Context (COCO)](https://cocodataset.org/#home)
@@ -62,9 +62,9 @@ To use this dataset with OMZ tools, make sure `<DATASET_DIR>` contains the follo
62
62
63
63
### Datasets in dataset_definitions.yml
64
64
*`ms_coco_mask_rcnn` used for evaluation models trained on COCO dataset for object detection and instance segmentation tasks. Background label + label map with 80 public available object categories are used. Annotations are saved in order of ascending image ID.
65
-
*`ms_coco_detection_91_classes` used for evaluation models trained on COCO dataset for object detection tasks. Background label + label map with 80 public available object categories are used (original indexing to 91 categories is preserved. You can find more information about object categories labels [here](https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/)). Annotations are saved in order of ascending image ID. (model examples: [`faster_rcnn_resnet50_coco`](../models/public/faster_rcnn_resnet50_coco/README.md), [`ssd_resnet50_v1_fpn_coco`](../models/public/ssd_resnet50_v1_fpn_coco/README.md))
65
+
*`ms_coco_detection_91_classes` used for evaluation models trained on COCO dataset for object detection tasks. Background label + label map with 80 public available object categories are used (original indexing to 91 categories is preserved. You can find more information about object categories labels [here](https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/)). Annotations are saved in order of ascending image ID. (model examples: [`faster_rcnn_resnet50_coco`](../models/public/faster_rcnn_resnet50_coco/README.md), [`ssd_mobilenet_v1_coco`](../models/public/ssd_mobilenet_v1_coco/README.md))
66
66
*`ms_coco_detection_80_class_with_background` used for evaluation models trained on COCO dataset for object detection tasks. Background label + label map with 80 public available object categories are used. Annotations are saved in order of ascending image ID. (model examples: [`faster-rcnn-resnet101-coco-sparse-60-0001`](../models/intel/faster-rcnn-resnet101-coco-sparse-60-0001/README.md), [`ssd-resnet34-1200-onnx`](../models/public/ssd-resnet34-1200-onnx/README.md))
67
-
*`ms_coco_detection_80_class_without_background` used for evaluation models trained on COCO dataset for object detection tasks. Label map with 80 public available object categories is used. Annotations are saved in order of ascending image ID. (model examples: [`ctdet_coco_dlav0_384`](../models/public/ctdet_coco_dlav0_384/README.md), [`yolo-v3-tf`](../models/public/yolo-v3-tf/README.md))
67
+
*`ms_coco_detection_80_class_without_background` used for evaluation models trained on COCO dataset for object detection tasks. Label map with 80 public available object categories is used. Annotations are saved in order of ascending image ID. (model examples: [`ctdet_coco_dlav0_512`](../models/public/ctdet_coco_dlav0_512/README.md), [`yolo-v3-tf`](../models/public/yolo-v3-tf/README.md))
68
68
*`ms_coco_keypoints` used for evaluation models trained on COCO dataset for human pose estimation tasks. Each annotation stores multiple keypoints for one image. (model examples: [`human-pose-estimation-0001`](../models/intel/human-pose-estimation-0001/README.md))
69
69
*`ms_coco_single_keypoints` used for evaluation models trained on COCO dataset for human pose estimation tasks. Each annotation stores single keypoints for image, so several annotation can be associated to one image. (model examples: [`single-human-pose-estimation-0001`](../models/public/single-human-pose-estimation-0001/README.md))
> **NOTE**: Refer to the tables [Intel's Pre-Trained Models Device Support](../../../models/intel/device_support.md) and [Public Pre-Trained Models Device Support](../../../models/public/device_support.md) for the details on models inference support at different devices.
115
87
@@ -136,10 +108,7 @@ Please note that you should use `<omz_dir>/data/dataset_classes/imagenet_2015.tx
136
108
137
109
* googlenet-v2
138
110
* se-inception
139
-
* se-resnet-101
140
-
* se-resnet-152
141
111
* se-resnet-50
142
-
* se-resnext-101
143
112
* se-resnext-50
144
113
145
114
and `<omz_dir>/data/dataset_classes/imagenet_2012.txt` labels file with all other models supported by the demo.
> **NOTE**: Refer to the tables [Intel's Pre-Trained Models Device Support](../../../models/intel/device_support.md) and [Public Pre-Trained Models Device Support](../../../models/public/device_support.md) for the details on models inference support at different devices.
113
85
@@ -119,10 +91,7 @@ Please note that you should use `<omz_dir>/data/dataset_classes/imagenet_2015.tx
119
91
120
92
* googlenet-v2
121
93
* se-inception
122
-
* se-resnet-101
123
-
* se-resnet-152
124
94
* se-resnet-50
125
-
* se-resnext-101
126
95
* se-resnext-50
127
96
128
97
and `<omz_dir>/data/dataset_classes/imagenet_2012.txt` labels file with all other models supported by the demo.
0 commit comments