forked from IntelLabs/open-omics-alphafold
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_amber.py
213 lines (200 loc) · 8.7 KB
/
run_amber.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import os
import pathlib
import pickle
import time
from runners.timmer import Timmers
from runners.saver import load_feature_dict_if_exist
from absl import app
from absl import flags
from absl import logging
from alphafold.common import protein
from alphafold.relax import relax
import numpy as np
import jax
### Define Flags
flags.DEFINE_list('fasta_paths', None, 'Paths to FASTA files, each containing '
'one sequence. Paths should be separated by commas. '
'All FASTA paths must have a unique basename as the '
'basename is used to name the output directories for '
'each prediction.')
flags.DEFINE_string('output_dir', None, 'Path to a directory that will '
'store the results.')
flags.DEFINE_list('model_names', None, 'Names of models to use.')
flags.DEFINE_string('root_params', None, 'root directory of model parameters') ### updated
flags.DEFINE_string('data_dir', None, 'Path to directory of supporting data.')
flags.DEFINE_string('jackhmmer_binary_path', '/usr/bin/jackhmmer',
'Path to the JackHMMER executable.')
flags.DEFINE_string('hhblits_binary_path', '/usr/bin/hhblits',
'Path to the HHblits executable.')
flags.DEFINE_string('hhsearch_binary_path', '/usr/bin/hhsearch',
'Path to the HHsearch executable.')
flags.DEFINE_string('kalign_binary_path', '/usr/bin/kalign',
'Path to the Kalign executable.')
flags.DEFINE_string('uniref90_database_path', None, 'Path to the Uniref90 '
'database for use by JackHMMER.')
flags.DEFINE_string('mgnify_database_path', None, 'Path to the MGnify '
'database for use by JackHMMER.')
flags.DEFINE_string('bfd_database_path', None, 'Path to the BFD '
'database for use by HHblits.')
flags.DEFINE_string('small_bfd_database_path', None, 'Path to the small '
'version of BFD used with the "reduced_dbs" preset.')
flags.DEFINE_string('uniclust30_database_path', None, 'Path to the Uniclust30 '
'database for use by HHblits.')
flags.DEFINE_string('pdb70_database_path', None, 'Path to the PDB70 '
'database for use by HHsearch.')
flags.DEFINE_string('template_mmcif_dir', None, 'Path to a directory with '
'template mmCIF structures, each named <pdb_id>.cif')
flags.DEFINE_string('max_template_date', None, 'Maximum template release date '
'to consider. Important if folding historical test sets.')
flags.DEFINE_string('obsolete_pdbs_path', None, 'Path to file containing a '
'mapping from obsolete PDB IDs to the PDB IDs of their '
'replacements.')
flags.DEFINE_enum('preset', 'full_dbs',
['reduced_dbs', 'full_dbs', 'casp14'],
'Choose preset model configuration - no ensembling and '
'smaller genetic database config (reduced_dbs), no '
'ensembling and full genetic database config (full_dbs) or '
'full genetic database config and 8 model ensemblings '
'(casp14).')
flags.DEFINE_boolean('benchmark', False, 'Run multiple JAX model evaluations '
'to obtain a timing that excludes the compilation time, '
'which should be more indicative of the time required for '
'inferencing many proteins.')
flags.DEFINE_integer('random_seed', None, 'The random seed for the data '
'pipeline. By default, this is randomly generated. Note '
'that even if this is set, Alphafold may still not be '
'deterministic, because processes like GPU inference are '
'nondeterministic.')
flags.DEFINE_integer('n_cpu', None, 'CPU physical cores used in MSA '
'It is dependent on the instance number you want to run '
'simultaneosly. e.g. your #CPU_core=32 & #instance=8, '
'choose 4', lower_bound=1, required=True)
FLAGS = flags.FLAGS
MAX_TEMPLATE_HITS = 20
RELAX_MAX_ITERATIONS = 0
RELAX_ENERGY_TOLERANCE = 2.39
RELAX_STIFFNESS = 10.0
RELAX_EXCLUDE_RESIDUES = []
RELAX_MAX_OUTER_ITERATIONS = 20
### helper func: validate required options
def _check_flag(flag_name: str, preset: str, should_be_set: bool):
if should_be_set != bool(FLAGS[flag_name].value):
verb = 'be' if should_be_set else 'not be'
raise ValueError(f'{flag_name} must {verb} set for preset "{preset}"')
### main func for model inference
def amber_relax(
timmer: Timmers,
fasta_name: str,
output_dir_base: str,
amber_relaxer: relax.AmberRelaxation):
print('### Validate preprocessed results.')
timings = {}
t0_total = time.time()
output_dir = os.path.join(output_dir_base, fasta_name)
assert os.path.isdir(output_dir)
msa_output_dir = os.path.join(output_dir, 'msas')
tmp_output_dir = os.path.join(output_dir, 'intermediates')
assert os.path.isdir(msa_output_dir)
assert os.path.isdir(tmp_output_dir)
ftmp_processed_featdict = os.path.join(
tmp_output_dir,
'processed_features.npz')
processed_feature_dict = load_feature_dict_if_exist(
ftmp_processed_featdict)
processed_feature_dict = jax.tree_map(
lambda x:np.array(x), processed_feature_dict)
if processed_feature_dict is None:
raise FileNotFoundError(
'Invalid processed features: ',
ftmp_processed_featdict)
model_name = FLAGS.model_names[0]
result_output_path = os.path.join(output_dir, f'result_{model_name}.pkl')
with open(result_output_path, 'rb') as f:
prediction_result = pickle.load(f)
prediction_result = jax.tree_map(
lambda x:np.array(x), prediction_result)
print('### load unrelaxed structure')
unrelaxed_protein = protein.from_prediction(
processed_feature_dict,
prediction_result)
print('### post-adjust: amber-relax')
relaxed_pdbs = {}
t_0 = time.time()
timmer_name = 'amberrelax_%s_from_%s' % (fasta_name, model_name)
timmer.add_timmer(timmer_name)
t1_amber = time.time()
relaxed_pdb_str, _, _ = amber_relaxer.process(prot=unrelaxed_protein)
t2_amber = time.time()
print(' # [TIME] amber process =', (t2_amber-t1_amber),'sec')
relaxed_pdbs[model_name] = relaxed_pdb_str
f_relaxed_output = os.path.join(output_dir, f'relaxed_{model_name}.pdb')
with open(f_relaxed_output, 'w') as h:
h.write(relaxed_pdb_str)
timings[f'relax_{model_name}'] = time.time() - t_0
timmer.end_timmer(timmer_name)
timmer.save()
t_diff = time.time() - t0_total
timings[f'predict_and_compile_all_models'] = t_diff
def main(argv):
if len(argv) > 1:
raise app.UsageError('Too many cml args.')
use_small_bfd = FLAGS.preset == 'reduced_dbs'
_check_flag('small_bfd_database_path', FLAGS.preset,
should_be_set=use_small_bfd)
_check_flag('bfd_database_path', FLAGS.preset,
should_be_set=not use_small_bfd)
_check_flag('uniclust30_database_path', FLAGS.preset,
should_be_set=not use_small_bfd)
print('### start script for model infer.')
# Check for duplicate FASTA file names.
fasta_names = [pathlib.Path(p).stem for p in FLAGS.fasta_paths]
if len(fasta_names) != len(set(fasta_names)):
raise ValueError('All FASTA paths must have a unique basename.')
# init timmers
f_timmer = os.path.join(FLAGS.output_dir, 'timmers_%s.txt' % fasta_names[0])
h_timmer = Timmers(f_timmer)
print('### use %d CPU cores' % FLAGS.n_cpu)
# init amber
h_timmer.add_timmer('amber_relaxation')
amber_relaxer = relax.AmberRelaxation(
max_iterations=RELAX_MAX_ITERATIONS,
tolerance=RELAX_ENERGY_TOLERANCE,
stiffness=RELAX_STIFFNESS,
exclude_residues=RELAX_EXCLUDE_RESIDUES,
max_outer_iterations=RELAX_MAX_OUTER_ITERATIONS,
use_gpu=False)
h_timmer.end_timmer('amber_relaxation')
h_timmer.save()
# init randomizer
random_seed = FLAGS.random_seed
if random_seed is None:
#random_seed = random.randrange(sys.maxsize)
random_seed = 5582232524994481130
logging.info('Using random seed %d for the data pipeline', random_seed)
### predict
for fasta_path, fasta_name in zip(FLAGS.fasta_paths, fasta_names):
h_timmer.add_timmer('predict_%s' % fasta_name)
amber_relax(
timmer=h_timmer,
fasta_name=fasta_name,
output_dir_base=FLAGS.output_dir,
amber_relaxer=amber_relaxer)
h_timmer.end_timmer('predict_%s' % fasta_name)
h_timmer.save()
if __name__ == '__main__':
flags.mark_flags_as_required([
'fasta_paths',
'output_dir',
'model_names',
'root_params',
'data_dir',
'preset',
'uniref90_database_path',
'mgnify_database_path',
'pdb70_database_path',
'template_mmcif_dir',
'max_template_date',
'obsolete_pdbs_path',
'n_cpu'
])
app.run(main)