-
Notifications
You must be signed in to change notification settings - Fork 245
/
Copy pathbinary_decoder.cpp
576 lines (510 loc) · 23.3 KB
/
binary_decoder.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
/*
* Copyright (C) 2018-2025 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "shared/offline_compiler/source/decoder/binary_decoder.h"
#include "shared/offline_compiler/source/decoder/helper.h"
#include "shared/offline_compiler/source/offline_compiler.h"
#include "shared/source/device_binary_format/device_binary_formats.h"
#include "shared/source/device_binary_format/elf/elf_decoder.h"
#include "shared/source/device_binary_format/elf/ocl_elf.h"
#include "shared/source/helpers/file_io.h"
#include "shared/source/helpers/product_config_helper.h"
#include "shared/source/helpers/ptr_math.h"
#include "shared/source/utilities/directory.h"
#include <cstring>
#include <fstream>
#include <sstream>
template <typename T>
T readUnaligned(const void *ptr) {
T retVal = 0;
const uint8_t *tmp1 = reinterpret_cast<const uint8_t *>(ptr);
uint8_t *tmp2 = reinterpret_cast<uint8_t *>(&retVal);
for (uint8_t i = 0; i < sizeof(T); ++i) {
*(tmp2++) = *(tmp1++);
}
return retVal;
}
int BinaryDecoder::decode() {
parseTokens();
std::stringstream ptmFile;
auto [ptr, size] = getDevBinary();
if (ptr == nullptr) {
argHelper->printf("Error! Device Binary section was not found.\n");
abortOclocExecution(1);
return -1;
}
return processBinary(ptr, size, ptmFile);
}
void BinaryDecoder::dumpField(const void *&binaryPtr, const PTField &field, std::stringstream &ptmFile) {
ptmFile << '\t' << static_cast<int>(field.size) << ' ';
switch (field.size) {
case 1: {
auto val = readUnaligned<uint8_t>(binaryPtr);
ptmFile << field.name << " " << +val << '\n';
break;
}
case 2: {
auto val = readUnaligned<uint16_t>(binaryPtr);
ptmFile << field.name << " " << val << '\n';
break;
}
case 4: {
auto val = readUnaligned<uint32_t>(binaryPtr);
ptmFile << field.name << " " << val << '\n';
break;
}
case 8: {
auto val = readUnaligned<uint64_t>(binaryPtr);
ptmFile << field.name << " " << val << '\n';
break;
}
default:
argHelper->printf("Error! Unknown size.\n");
abortOclocExecution(1);
}
binaryPtr = ptrOffset(binaryPtr, field.size);
}
template <typename ContainerT>
bool isPatchtokensBinary(const ContainerT &data) {
static constexpr NEO::ConstStringRef intcMagic = "CTNI";
auto binaryMagicLen = std::min(intcMagic.size(), data.size());
NEO::ConstStringRef binaryMagic(reinterpret_cast<const char *>(&*data.begin()), binaryMagicLen);
return intcMagic == binaryMagic;
}
std::pair<const void *, size_t> BinaryDecoder::getDevBinary() {
binary = argHelper->readBinaryFile(binaryFile);
if (isPatchtokensBinary(binary)) {
return {binary.data(), binary.size()};
}
std::pair<const void *, size_t> data(nullptr, 0u);
std::string decoderErrors;
std::string decoderWarnings;
auto input = ArrayRef<const uint8_t>(reinterpret_cast<const uint8_t *>(binary.data()), binary.size());
auto elf = NEO::Elf::decodeElf<NEO::Elf::EI_CLASS_64>(input, decoderErrors, decoderWarnings);
for (const auto §ionHeader : elf.sectionHeaders) { // Finding right section
auto sectionData = ArrayRef<const char>(reinterpret_cast<const char *>(sectionHeader.data.begin()), sectionHeader.data.size());
switch (sectionHeader.header->type) {
case NEO::Elf::SHT_OPENCL_LLVM_BINARY: {
argHelper->saveOutput(pathToDump + "llvm.bin", sectionData.begin(), sectionData.size());
break;
}
case NEO::Elf::SHT_OPENCL_SPIRV: {
argHelper->saveOutput(pathToDump + "spirv.bin", sectionData.begin(), sectionData.size());
break;
}
case NEO::Elf::SHT_OPENCL_OPTIONS: {
argHelper->saveOutput(pathToDump + "build.bin", sectionData.begin(), sectionData.size());
break;
}
case NEO::Elf::SHT_OPENCL_DEV_BINARY: {
data = {sectionData.begin(), sectionData.size()};
break;
}
default:
break;
}
}
return data;
}
uint8_t BinaryDecoder::getSize(const std::string &typeStr) {
if (typeStr == "uint8_t") {
return 1;
} else if (typeStr == "uint16_t") {
return 2;
} else if (typeStr == "uint32_t") {
return 4;
} else if (typeStr == "uint64_t") {
return 8;
} else {
argHelper->printf("Unhandled type : %s\n", typeStr.c_str());
exit(1);
}
}
std::vector<std::string> BinaryDecoder::loadPatchList() {
if (argHelper->hasHeaders()) {
return argHelper->headersToVectorOfStrings();
} else {
std::vector<std::string> patchList;
if (pathToPatch.empty()) {
argHelper->printf("Path to patch list not provided - using defaults, skipping patchtokens as undefined.\n");
patchList = {
"struct SProgramBinaryHeader",
"{",
" uint32_t Magic;",
" uint32_t Version;",
" uint32_t Device;",
" uint32_t GPUPointerSizeInBytes;",
" uint32_t NumberOfKernels;",
" uint32_t SteppingId;",
" uint32_t PatchListSize;",
"};",
"",
"struct SKernelBinaryHeader",
"{",
" uint32_t CheckSum;",
" uint64_t ShaderHashCode;",
" uint32_t KernelNameSize;",
" uint32_t PatchListSize;",
"};",
"",
"struct SKernelBinaryHeaderCommon :",
" SKernelBinaryHeader",
"{",
" uint32_t KernelHeapSize;",
" uint32_t GeneralStateHeapSize;",
" uint32_t DynamicStateHeapSize;",
" uint32_t SurfaceStateHeapSize;",
" uint32_t KernelUnpaddedSize;",
"};",
"",
"enum PATCH_TOKEN",
"{",
" PATCH_TOKEN_ALLOCATE_GLOBAL_MEMORY_SURFACE_PROGRAM_BINARY_INFO, // 41 @SPatchAllocateGlobalMemorySurfaceProgramBinaryInfo@",
" PATCH_TOKEN_ALLOCATE_CONSTANT_MEMORY_SURFACE_PROGRAM_BINARY_INFO, // 42 @SPatchAllocateConstantMemorySurfaceProgramBinaryInfo@",
"};",
"struct SPatchAllocateGlobalMemorySurfaceProgramBinaryInfo :",
" SPatchItemHeader",
"{",
" uint32_t Type;",
" uint32_t GlobalBufferIndex;",
" uint32_t InlineDataSize;",
"};",
"struct SPatchAllocateConstantMemorySurfaceProgramBinaryInfo :",
" SPatchItemHeader",
"{",
" uint32_t ConstantBufferIndex;",
" uint32_t InlineDataSize;",
"};",
};
} else {
readFileToVectorOfStrings(patchList, pathToPatch + "patch_list.h", true);
readFileToVectorOfStrings(patchList, pathToPatch + "patch_shared.h", true);
readFileToVectorOfStrings(patchList, pathToPatch + "patch_g7.h", true);
readFileToVectorOfStrings(patchList, pathToPatch + "patch_g8.h", true);
readFileToVectorOfStrings(patchList, pathToPatch + "patch_g9.h", true);
readFileToVectorOfStrings(patchList, pathToPatch + "patch_g10.h", true);
}
return patchList;
}
}
void BinaryDecoder::parseTokens() {
// Creating patchlist definitions
auto patchList = loadPatchList();
size_t pos = findPos(patchList, "struct SProgramBinaryHeader");
if (pos == patchList.size()) {
argHelper->printf("While parsing patchtoken definitions: couldn't find SProgramBinaryHeader.");
abortOclocExecution(1);
}
size_t patchTokenEnumPos = findPos(patchList, "enum PATCH_TOKEN");
if (patchTokenEnumPos == patchList.size()) {
argHelper->printf("While parsing patchtoken definitions: couldn't find enum PATCH_TOKEN.");
abortOclocExecution(1);
}
pos = findPos(patchList, "struct SKernelBinaryHeader");
if (pos == patchList.size()) {
argHelper->printf("While parsing patchtoken definitions: couldn't find SKernelBinaryHeader.");
abortOclocExecution(1);
}
pos = findPos(patchList, "struct SKernelBinaryHeaderCommon :");
if (pos == patchList.size()) {
argHelper->printf("While parsing patchtoken definitions: couldn't find SKernelBinaryHeaderCommon.");
abortOclocExecution(1);
}
for (auto i = patchTokenEnumPos + 1; i < patchList.size(); ++i) {
if (patchList[i].find("};") != std::string::npos) {
break;
} else if (patchList[i].find("PATCH_TOKEN") == std::string::npos) {
continue;
} else if (patchList[i].find('@') == std::string::npos) {
continue;
}
size_t patchTokenNoStartPos, patchTokenNoEndPos;
patchTokenNoStartPos = patchList[i].find('/') + 3;
patchTokenNoEndPos = patchList[i].find(' ', patchTokenNoStartPos);
std::stringstream patchTokenNoStream(patchList[i].substr(patchTokenNoStartPos, patchTokenNoEndPos - patchTokenNoStartPos));
int patchNo;
patchTokenNoStream >> patchNo;
auto patchTokenPtr = std::make_unique<PatchToken>();
size_t nameStartPos, nameEndPos;
nameStartPos = patchList[i].find("PATCH_TOKEN");
nameEndPos = patchList[i].find(',', nameStartPos);
patchTokenPtr->name = patchList[i].substr(nameStartPos, nameEndPos - nameStartPos);
nameStartPos = patchList[i].find('@');
nameEndPos = patchList[i].find('@', nameStartPos + 1);
if (nameEndPos == std::string::npos) {
continue;
}
std::string structName = "struct " + patchList[i].substr(nameStartPos + 1, nameEndPos - nameStartPos - 1) + " :";
size_t structPos = findPos(patchList, structName);
if (structPos == patchList.size()) {
continue;
}
patchTokenPtr->size = readStructFields(patchList, structPos + 1, patchTokenPtr->fields);
patchTokens[static_cast<uint8_t>(patchNo)] = std::move(patchTokenPtr);
}
// Finding and reading Program Binary Header
size_t structPos = findPos(patchList, "struct SProgramBinaryHeader") + 1;
programHeader.size = readStructFields(patchList, structPos, programHeader.fields);
// Finding and reading Kernel Binary Header
structPos = findPos(patchList, "struct SKernelBinaryHeader") + 1;
kernelHeader.size = readStructFields(patchList, structPos, kernelHeader.fields);
structPos = findPos(patchList, "struct SKernelBinaryHeaderCommon :") + 1;
kernelHeader.size += readStructFields(patchList, structPos, kernelHeader.fields);
}
void BinaryDecoder::printHelp() {
argHelper->printf(R"OCLOC_HELP(Disassembles Intel Compute GPU device binary files.
Output of such operation is a set of files that can be later used to
reassemble back a valid Intel Compute GPU device binary (using ocloc 'asm'
command). This set of files contains:
Program-scope data :
- spirv.bin (optional) - spirV representation of the program from which
the input binary was generated
- build.bin - build options that were used when generating the
input binary
- PTM.txt - 'patch tokens' describing program-scope and
kernel-scope metadata about the input binary
Kernel-scope data (<kname> is replaced by corresponding kernel's name):
- <kname>_DynamicStateHeap.bin - initial DynamicStateHeap (binary file)
- <kname>_SurfaceStateHeap.bin - initial SurfaceStateHeap (binary file)
- <kname>_KernelHeap.asm - list of instructions describing
the kernel function (text file)
Usage: ocloc disasm -file <file> [-patch <patchtokens_dir>] [-dump <dump_dir>] [-device <device_type>] [-ignore_isa_padding]
-file <file> Input file to be disassembled.
This file should be an Intel Compute GPU device binary.
-patch <patchtokens_dir> Optional path to the directory containing
patchtoken definitions (patchlist.h, etc.)
as defined in intel-graphics-compiler (IGC) repo,
IGC subdirectory :
IGC/AdaptorOCL/ocl_igc_shared/executable_format
By default (when patchtokens_dir is not provided)
patchtokens won't be decoded.
-dump <dump_dir> Optional path for files representing decoded binary.
Default is './dump'.
-device <device_type> Optional target device of input binary
<device_type> can be: %s
By default ocloc will pick base device within
a generation - i.e. both skl and kbl will
fallback to skl. If specific product (e.g. kbl)
is needed, provide it as device_type.
-ignore_isa_padding Ignores Kernel Heap padding - Kernel Heap binary
will be saved without padding.
-v Verbose mode.
--help Print this usage message.
Examples:
Disassemble Intel Compute GPU device binary
ocloc disasm -file source_file_Gen9core.bin
)OCLOC_HELP",
argHelper->createStringForArgs(argHelper->productConfigHelper->getDeviceAcronyms()).c_str());
}
int BinaryDecoder::processBinary(const void *&ptr, size_t sectionSize, std::stringstream &ptmFile) {
ptmFile << "ProgramBinaryHeader:\n";
uint32_t numberOfKernels = 0, patchListSize = 0, device = 0;
for (const auto &v : programHeader.fields) {
if (v.name == "NumberOfKernels") {
numberOfKernels = readUnaligned<uint32_t>(ptr);
} else if (v.name == "PatchListSize") {
patchListSize = readUnaligned<uint32_t>(ptr);
} else if (v.name == "Device") {
device = readUnaligned<uint32_t>(ptr);
}
dumpField(ptr, v, ptmFile);
}
if (numberOfKernels == 0) {
argHelper->printf("Warning! Number of Kernels is 0.\n");
}
readPatchTokens(ptr, patchListSize, ptmFile);
iga->setGfxCore(static_cast<GFXCORE_FAMILY>(device));
// Reading Kernels
for (uint32_t i = 0; i < numberOfKernels; ++i) {
ptmFile << "Kernel #" << i << '\n';
processKernel(ptr, sectionSize, ptmFile);
}
auto ptmFileString = ptmFile.str();
argHelper->saveOutput(pathToDump + "PTM.txt", ptmFileString.c_str(), ptmFileString.length() + 1);
return 0;
}
void BinaryDecoder::validateLoadedKernelData(KernelSizeData kernelLoadedData, size_t sectionSize) {
if (kernelLoadedData.size > sectionSize) {
argHelper->printf("Error! %s loaded from KernelBinaryHeader is invalid: %d.\n", kernelLoadedData.name.str().c_str(), kernelLoadedData.size);
abortOclocExecution(1);
}
}
void BinaryDecoder::processKernel(const void *&ptr, size_t sectionSize, std::stringstream &ptmFile) {
KernelSizeData kernelPatchListSize{"PatchListSize", 0u},
kernelNameSize{"KernelNameSize", 0u},
kernelHeapSize{"KernelHeapSize", 0u},
kernelHeapUnpaddedSize{"KernelUnpaddedSize", 0u},
generalStateHeapSize{"GeneralStateHeapSize", 0u},
dynamicStateHeapSize{"DynamicStateHeapSize", 0u},
surfaceStateHeapSize{"SurfaceStateHeapSize", 0u};
ptmFile << "KernelBinaryHeader:\n";
for (const auto &v : kernelHeader.fields) {
if (v.name == kernelPatchListSize.name)
kernelPatchListSize.size = readUnaligned<uint32_t>(ptr);
else if (v.name == kernelNameSize.name)
kernelNameSize.size = readUnaligned<uint32_t>(ptr);
else if (v.name == kernelHeapSize.name)
kernelHeapSize.size = readUnaligned<uint32_t>(ptr);
else if (v.name == kernelHeapUnpaddedSize.name)
kernelHeapUnpaddedSize.size = readUnaligned<uint32_t>(ptr);
else if (v.name == generalStateHeapSize.name)
generalStateHeapSize.size = readUnaligned<uint32_t>(ptr);
else if (v.name == dynamicStateHeapSize.name)
dynamicStateHeapSize.size = readUnaligned<uint32_t>(ptr);
else if (v.name == surfaceStateHeapSize.name)
surfaceStateHeapSize.size = readUnaligned<uint32_t>(ptr);
dumpField(ptr, v, ptmFile);
}
if (kernelNameSize.size == 0) {
argHelper->printf("Error! KernelNameSize was 0.\n");
abortOclocExecution(1);
}
validateLoadedKernelData(kernelNameSize, sectionSize);
validateLoadedKernelData(kernelPatchListSize, sectionSize);
validateLoadedKernelData(kernelHeapSize, sectionSize);
validateLoadedKernelData(kernelHeapUnpaddedSize, sectionSize);
validateLoadedKernelData(generalStateHeapSize, sectionSize);
validateLoadedKernelData(dynamicStateHeapSize, sectionSize);
validateLoadedKernelData(surfaceStateHeapSize, sectionSize);
ptmFile << "\tKernelName ";
std::string kernelName(static_cast<const char *>(ptr), 0, kernelNameSize.size);
ptmFile << kernelName << '\n';
ptr = ptrOffset(ptr, kernelNameSize.size);
std::string fileName = pathToDump + kernelName + "_KernelHeap";
argHelper->printf("Trying to disassemble %s.krn\n", kernelName.c_str());
std::string disassembledKernel;
if (iga->tryDisassembleGenISA(ptr, kernelHeapUnpaddedSize.size, disassembledKernel)) {
argHelper->saveOutput(fileName + ".asm", disassembledKernel.data(), disassembledKernel.size());
} else {
if (ignoreIsaPadding) {
argHelper->saveOutput(fileName + ".dat", ptr, kernelHeapUnpaddedSize.size);
} else {
argHelper->saveOutput(fileName + ".dat", ptr, kernelHeapSize.size);
}
}
ptr = ptrOffset(ptr, kernelHeapSize.size);
if (generalStateHeapSize.size != 0) {
argHelper->printf("Warning! GeneralStateHeapSize wasn't 0.\n");
fileName = pathToDump + kernelName + "_GeneralStateHeap.bin";
argHelper->saveOutput(fileName, ptr, dynamicStateHeapSize.size);
ptr = ptrOffset(ptr, generalStateHeapSize.size);
}
fileName = pathToDump + kernelName + "_DynamicStateHeap.bin";
argHelper->saveOutput(fileName, ptr, dynamicStateHeapSize.size);
ptr = ptrOffset(ptr, dynamicStateHeapSize.size);
fileName = pathToDump + kernelName + "_SurfaceStateHeap.bin";
argHelper->saveOutput(fileName, ptr, surfaceStateHeapSize.size);
ptr = ptrOffset(ptr, surfaceStateHeapSize.size);
if (kernelPatchListSize.size == 0) {
argHelper->printf("Warning! Kernel's patch list size was 0.\n");
}
readPatchTokens(ptr, kernelPatchListSize.size, ptmFile);
}
void BinaryDecoder::readPatchTokens(const void *&patchListPtr, uint32_t patchListSize, std::stringstream &ptmFile) {
auto endPatchListPtr = ptrOffset(patchListPtr, patchListSize);
while (patchListPtr != endPatchListPtr) {
auto patchTokenPtr = patchListPtr;
auto token = readUnaligned<uint32_t>(patchTokenPtr);
patchTokenPtr = ptrOffset(patchTokenPtr, sizeof(uint32_t));
auto size = readUnaligned<uint32_t>(patchTokenPtr);
patchTokenPtr = ptrOffset(patchTokenPtr, sizeof(uint32_t));
if (patchTokens.count(token) > 0) {
ptmFile << patchTokens[(token)]->name << ":\n";
} else {
ptmFile << "Unidentified PatchToken:\n";
}
ptmFile << '\t' << "4 Token " << token << '\n';
ptmFile << '\t' << "4 Size " << size << '\n';
if (patchTokens.count(token) > 0) {
uint32_t fieldsSize = 0;
for (const auto &v : patchTokens[(token)]->fields) {
if ((fieldsSize += static_cast<uint32_t>(v.size)) > (size - sizeof(uint32_t) * 2)) {
break;
}
if (v.name == "InlineDataSize") { // Because InlineData field value is not added to PT size
auto inlineDataSize = readUnaligned<uint32_t>(patchTokenPtr);
patchListPtr = ptrOffset(patchListPtr, inlineDataSize);
}
dumpField(patchTokenPtr, v, ptmFile);
}
}
patchListPtr = ptrOffset(patchListPtr, size);
if (patchListPtr > patchTokenPtr) {
ptmFile << "\tHex";
const uint8_t *byte = reinterpret_cast<const uint8_t *>(patchTokenPtr);
while (ptrDiff(patchListPtr, patchTokenPtr) != 0) {
ptmFile << ' ' << std::hex << +*(byte++);
patchTokenPtr = ptrOffset(patchTokenPtr, sizeof(uint8_t));
}
ptmFile << std::dec << '\n';
}
}
}
uint32_t BinaryDecoder::readStructFields(const std::vector<std::string> &patchList,
const size_t &structPos, std::vector<PTField> &fields) {
std::string typeStr, fieldName;
uint8_t size;
uint32_t fullSize = 0;
size_t f1, f2;
for (auto i = structPos; i < patchList.size(); ++i) {
if (patchList[i].find("};") != std::string::npos) {
break;
} else if (patchList[i].find("int") == std::string::npos) {
continue;
}
f1 = patchList[i].find_first_not_of(' ');
f2 = patchList[i].find(' ', f1 + 1);
typeStr = patchList[i].substr(f1, f2 - f1);
size = getSize(typeStr);
f1 = patchList[i].find_first_not_of(' ', f2);
f2 = patchList[i].find(';');
fieldName = patchList[i].substr(f1, f2 - f1);
fields.push_back(PTField{size, fieldName});
fullSize += size;
}
return fullSize;
}
int BinaryDecoder::validateInput(const std::vector<std::string> &args) {
for (size_t argIndex = 2; argIndex < args.size(); ++argIndex) {
const auto &currArg = args[argIndex];
const bool hasMoreArgs = (argIndex + 1 < args.size());
if ("-file" == currArg && hasMoreArgs) {
binaryFile = args[++argIndex];
} else if ("-device" == currArg && hasMoreArgs) {
setProductFamilyForIga(args[++argIndex], iga.get(), argHelper);
} else if ("-patch" == currArg && hasMoreArgs) {
pathToPatch = args[++argIndex];
addSlash(pathToPatch);
} else if ("-dump" == currArg && hasMoreArgs) {
pathToDump = args[++argIndex];
addSlash(pathToDump);
} else if ("--help" == currArg) {
showHelp = true;
return 0;
} else if ("-ignore_isa_padding" == currArg) {
ignoreIsaPadding = true;
} else if ("-q" == currArg) {
argHelper->getPrinterRef().setSuppressMessages(true);
iga->setMessagePrinter(argHelper->getPrinterRef());
} else if ("-v" == currArg) {
argHelper->setVerbose(true);
} else {
argHelper->printf("Unknown argument %s\n", currArg.c_str());
return -1;
}
}
if (false == iga->isKnownPlatform()) {
argHelper->printf("Warning : missing or invalid -device parameter - results may be inaccurate\n");
}
if (!argHelper->outputEnabled()) {
if (pathToDump.empty()) {
argHelper->printf("Warning : Path to dump folder not specificed - using ./dump as default.\n");
pathToDump = std::string("dump/");
}
NEO::Directory::createDirectory(pathToDump);
}
return 0;
}