-
Notifications
You must be signed in to change notification settings - Fork 245
/
Copy pathioctl_helper_xe.cpp
1739 lines (1495 loc) · 66.7 KB
/
ioctl_helper_xe.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (C) 2023-2025 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "shared/source/os_interface/linux/xe/ioctl_helper_xe.h"
#include "shared/source/debugger/debugger.h"
#include "shared/source/execution_environment/execution_environment.h"
#include "shared/source/execution_environment/root_device_environment.h"
#include "shared/source/gmm_helper/gmm_helper.h"
#include "shared/source/helpers/aligned_memory.h"
#include "shared/source/helpers/basic_math.h"
#include "shared/source/helpers/common_types.h"
#include "shared/source/helpers/constants.h"
#include "shared/source/helpers/engine_control.h"
#include "shared/source/helpers/gfx_core_helper.h"
#include "shared/source/helpers/hw_info.h"
#include "shared/source/helpers/ptr_math.h"
#include "shared/source/helpers/string.h"
#include "shared/source/os_interface/linux/drm_buffer_object.h"
#include "shared/source/os_interface/linux/drm_neo.h"
#include "shared/source/os_interface/linux/engine_info.h"
#include "shared/source/os_interface/linux/memory_info.h"
#include "shared/source/os_interface/linux/os_context_linux.h"
#include "shared/source/os_interface/linux/sys_calls.h"
#include "shared/source/os_interface/linux/xe/xedrm.h"
#include "shared/source/os_interface/os_time.h"
#include <algorithm>
#include <iostream>
#include <limits>
#include <sstream>
#define STRINGIFY_ME(X) return #X
#define RETURN_ME(X) return X
namespace NEO {
const char *IoctlHelperXe::xeGetClassName(int className) {
switch (className) {
case DRM_XE_ENGINE_CLASS_RENDER:
return "rcs";
case DRM_XE_ENGINE_CLASS_COPY:
return "bcs";
case DRM_XE_ENGINE_CLASS_VIDEO_DECODE:
return "vcs";
case DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE:
return "vecs";
case DRM_XE_ENGINE_CLASS_COMPUTE:
return "ccs";
}
return "Unknown class name";
}
const char *IoctlHelperXe::xeGetBindOperationName(int bindOperation) {
switch (bindOperation) {
case DRM_XE_VM_BIND_OP_MAP:
return "MAP";
case DRM_XE_VM_BIND_OP_UNMAP:
return "UNMAP";
case DRM_XE_VM_BIND_OP_MAP_USERPTR:
return "MAP_USERPTR";
case DRM_XE_VM_BIND_OP_UNMAP_ALL:
return "UNMAP ALL";
case DRM_XE_VM_BIND_OP_PREFETCH:
return "PREFETCH";
}
return "Unknown operation";
}
std::string IoctlHelperXe::xeGetBindFlagNames(int bindFlags) {
if (bindFlags == 0) {
return "";
}
std::string flags;
if (bindFlags & DRM_XE_VM_BIND_FLAG_READONLY) {
bindFlags &= ~DRM_XE_VM_BIND_FLAG_READONLY;
flags += "READONLY ";
}
if (bindFlags & DRM_XE_VM_BIND_FLAG_IMMEDIATE) {
bindFlags &= ~DRM_XE_VM_BIND_FLAG_IMMEDIATE;
flags += "IMMEDIATE ";
}
if (bindFlags & DRM_XE_VM_BIND_FLAG_NULL) {
bindFlags &= ~DRM_XE_VM_BIND_FLAG_NULL;
flags += "NULL ";
}
if (bindFlags & DRM_XE_VM_BIND_FLAG_DUMPABLE) {
bindFlags &= ~DRM_XE_VM_BIND_FLAG_DUMPABLE;
flags += "DUMPABLE ";
}
if (bindFlags != 0) {
flags += "Unknown flag ";
}
// Remove the trailing space
if (!flags.empty() && flags.back() == ' ') {
flags.pop_back();
}
return flags;
}
const char *IoctlHelperXe::xeGetengineClassName(uint32_t engineClass) {
switch (engineClass) {
case DRM_XE_ENGINE_CLASS_RENDER:
return "DRM_XE_ENGINE_CLASS_RENDER";
case DRM_XE_ENGINE_CLASS_COPY:
return "DRM_XE_ENGINE_CLASS_COPY";
case DRM_XE_ENGINE_CLASS_VIDEO_DECODE:
return "DRM_XE_ENGINE_CLASS_VIDEO_DECODE";
case DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE:
return "DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE";
case DRM_XE_ENGINE_CLASS_COMPUTE:
return "DRM_XE_ENGINE_CLASS_COMPUTE";
default:
return "Unknown engine class";
}
}
IoctlHelperXe::IoctlHelperXe(Drm &drmArg) : IoctlHelper(drmArg) {
xeLog("IoctlHelperXe::IoctlHelperXe\n", "");
}
bool IoctlHelperXe::queryDeviceIdAndRevision(const Drm &drm) {
auto fileDescriptor = drm.getFileDescriptor();
drm_xe_device_query queryConfig = {};
queryConfig.query = DRM_XE_DEVICE_QUERY_CONFIG;
int ret = SysCalls::ioctl(fileDescriptor, DRM_IOCTL_XE_DEVICE_QUERY, &queryConfig);
if (ret || queryConfig.size == 0) {
printDebugString(debugManager.flags.PrintDebugMessages.get(), stderr, "%s", "FATAL: Cannot query size for device config!\n");
return false;
}
auto data = std::vector<uint64_t>(Math::divideAndRoundUp(sizeof(drm_xe_query_config) + sizeof(uint64_t) * queryConfig.size, sizeof(uint64_t)), 0);
struct drm_xe_query_config *config = reinterpret_cast<struct drm_xe_query_config *>(data.data());
queryConfig.data = castToUint64(config);
ret = SysCalls::ioctl(fileDescriptor, DRM_IOCTL_XE_DEVICE_QUERY, &queryConfig);
if (ret) {
printDebugString(debugManager.flags.PrintDebugMessages.get(), stderr, "%s", "FATAL: Cannot query device ID and revision!\n");
return false;
}
auto hwInfo = drm.getRootDeviceEnvironment().getMutableHardwareInfo();
hwInfo->platform.usDeviceID = config->info[DRM_XE_QUERY_CONFIG_REV_AND_DEVICE_ID] & 0xffff;
hwInfo->platform.usRevId = static_cast<int>((config->info[DRM_XE_QUERY_CONFIG_REV_AND_DEVICE_ID] >> 16) & 0xff);
return true;
}
bool IoctlHelperXe::initialize() {
xeLog("IoctlHelperXe::initialize\n", "");
euDebugInterface = EuDebugInterface::create(drm.getSysFsPciPath());
drm_xe_device_query queryConfig = {};
queryConfig.query = DRM_XE_DEVICE_QUERY_CONFIG;
auto retVal = IoctlHelper::ioctl(DrmIoctl::query, &queryConfig);
if (retVal != 0 || queryConfig.size == 0) {
return false;
}
auto data = std::vector<uint64_t>(Math::divideAndRoundUp(sizeof(drm_xe_query_config) + sizeof(uint64_t) * queryConfig.size, sizeof(uint64_t)), 0);
struct drm_xe_query_config *config = reinterpret_cast<struct drm_xe_query_config *>(data.data());
queryConfig.data = castToUint64(config);
IoctlHelper::ioctl(DrmIoctl::query, &queryConfig);
xeLog("DRM_XE_QUERY_CONFIG_REV_AND_DEVICE_ID\t%#llx\n",
config->info[DRM_XE_QUERY_CONFIG_REV_AND_DEVICE_ID]);
xeLog(" REV_ID\t\t\t\t%#llx\n",
(config->info[DRM_XE_QUERY_CONFIG_REV_AND_DEVICE_ID] >> 16) & 0xff);
xeLog(" DEVICE_ID\t\t\t\t%#llx\n",
config->info[DRM_XE_QUERY_CONFIG_REV_AND_DEVICE_ID] & 0xffff);
xeLog("DRM_XE_QUERY_CONFIG_FLAGS\t\t\t%#llx\n",
config->info[DRM_XE_QUERY_CONFIG_FLAGS]);
xeLog(" DRM_XE_QUERY_CONFIG_FLAG_HAS_VRAM\t%s\n",
config->info[DRM_XE_QUERY_CONFIG_FLAGS] &
DRM_XE_QUERY_CONFIG_FLAG_HAS_VRAM
? "ON"
: "OFF");
xeLog("DRM_XE_QUERY_CONFIG_MIN_ALIGNMENT\t\t%#llx\n",
config->info[DRM_XE_QUERY_CONFIG_MIN_ALIGNMENT]);
xeLog("DRM_XE_QUERY_CONFIG_VA_BITS\t\t%#llx\n",
config->info[DRM_XE_QUERY_CONFIG_VA_BITS]);
xeLog("DRM_XE_QUERY_CONFIG_MAX_EXEC_QUEUE_PRIORITY\t\t%#llx\n",
config->info[DRM_XE_QUERY_CONFIG_MAX_EXEC_QUEUE_PRIORITY]);
maxExecQueuePriority = config->info[DRM_XE_QUERY_CONFIG_MAX_EXEC_QUEUE_PRIORITY] & 0xffff;
memset(&queryConfig, 0, sizeof(queryConfig));
queryConfig.query = DRM_XE_DEVICE_QUERY_HWCONFIG;
IoctlHelper::ioctl(DrmIoctl::query, &queryConfig);
auto newSize = queryConfig.size / sizeof(uint32_t);
hwconfig.resize(newSize);
queryConfig.data = castToUint64(hwconfig.data());
IoctlHelper::ioctl(DrmIoctl::query, &queryConfig);
auto hwInfo = this->drm.getRootDeviceEnvironment().getMutableHardwareInfo();
hwInfo->capabilityTable.gpuAddressSpace = (1ull << config->info[DRM_XE_QUERY_CONFIG_VA_BITS]) - 1;
hwInfo->capabilityTable.cxlType = 0;
if (getCxlType() && config->num_params > *getCxlType()) {
hwInfo->capabilityTable.cxlType = static_cast<uint32_t>(config->info[*getCxlType()]);
}
queryGtListData = queryData<uint64_t>(DRM_XE_DEVICE_QUERY_GT_LIST);
if (queryGtListData.empty()) {
return false;
}
xeGtListData = reinterpret_cast<drm_xe_query_gt_list *>(queryGtListData.data());
gtIdToTileId.resize(xeGtListData->num_gt, invalidIndex);
for (auto i = 0u; i < xeGtListData->num_gt; i++) {
const auto > = xeGtListData->gt_list[i];
if (gt.type == DRM_XE_QUERY_GT_TYPE_MAIN) {
gtIdToTileId[gt.gt_id] = gt.tile_id;
if (tileIdToGtId.size() < gt.tile_id + 1u) {
tileIdToGtId.resize(gt.tile_id + 1, invalidIndex);
}
tileIdToGtId[gt.tile_id] = gt.gt_id;
}
}
querySupportedFeatures();
return true;
}
IoctlHelperXe::~IoctlHelperXe() {
xeLog("IoctlHelperXe::~IoctlHelperXe\n", "");
}
bool IoctlHelperXe::isSetPairAvailable() {
return false;
}
bool IoctlHelperXe::isChunkingAvailable() {
return false;
}
bool IoctlHelperXe::isVmBindAvailable() {
return true;
}
bool IoctlHelperXe::setDomainCpu(uint32_t handle, bool writeEnable) {
return false;
}
template <typename DataType>
std::vector<DataType> IoctlHelperXe::queryData(uint32_t queryId) {
struct drm_xe_device_query deviceQuery = {};
deviceQuery.query = queryId;
IoctlHelper::ioctl(DrmIoctl::query, &deviceQuery);
std::vector<DataType> retVal(Math::divideAndRoundUp(deviceQuery.size, sizeof(DataType)));
deviceQuery.data = castToUint64(retVal.data());
IoctlHelper::ioctl(DrmIoctl::query, &deviceQuery);
return retVal;
}
template std::vector<uint8_t> IoctlHelperXe::queryData(uint32_t queryId);
template std::vector<uint64_t> IoctlHelperXe::queryData(uint32_t queryId);
uint32_t IoctlHelperXe::getNumEngines(uint64_t *enginesData) const {
return reinterpret_cast<struct drm_xe_query_engines *>(enginesData)->num_engines;
}
std::unique_ptr<EngineInfo> IoctlHelperXe::createEngineInfo(bool isSysmanEnabled) {
auto enginesData = queryData<uint64_t>(DRM_XE_DEVICE_QUERY_ENGINES);
if (enginesData.empty()) {
return {};
}
auto queryEngines = reinterpret_cast<struct drm_xe_query_engines *>(enginesData.data());
auto numberHwEngines = getNumEngines(enginesData.data());
xeLog("numberHwEngines=%d\n", numberHwEngines);
StackVec<std::vector<EngineCapabilities>, 2> enginesPerTile{};
std::bitset<8> multiTileMask{};
auto hwInfo = drm.getRootDeviceEnvironment().getMutableHardwareInfo();
auto defaultEngineClass = getDefaultEngineClass(hwInfo->capabilityTable.defaultEngineType);
for (auto i = 0u; i < numberHwEngines; i++) {
const auto &engine = queryEngines->engines[i].instance;
auto tile = engine.gt_id;
multiTileMask.set(tile);
EngineClassInstance engineClassInstance{};
engineClassInstance.engineClass = engine.engine_class;
engineClassInstance.engineInstance = engine.engine_instance;
xeLog("\t%s:%d:%d\n", xeGetClassName(engineClassInstance.engineClass), engineClassInstance.engineInstance, engine.gt_id);
const bool isBaseEngineClass = engineClassInstance.engineClass == getDrmParamValue(DrmParam::engineClassCompute) ||
engineClassInstance.engineClass == getDrmParamValue(DrmParam::engineClassRender) ||
engineClassInstance.engineClass == getDrmParamValue(DrmParam::engineClassCopy);
const bool isSysmanEngineClass = isSysmanEnabled && (engineClassInstance.engineClass == getDrmParamValue(DrmParam::engineClassVideo) ||
engineClassInstance.engineClass == getDrmParamValue(DrmParam::engineClassVideoEnhance));
if (isBaseEngineClass || isSysmanEngineClass || isExtraEngineClassAllowed(engineClassInstance.engineClass)) {
if (enginesPerTile.size() <= tile) {
enginesPerTile.resize(tile + 1);
}
enginesPerTile[tile].push_back({engineClassInstance, {}});
if (!defaultEngine && engineClassInstance.engineClass == defaultEngineClass) {
defaultEngine = std::make_unique<drm_xe_engine_class_instance>();
*defaultEngine = engine;
}
}
}
UNRECOVERABLE_IF(!defaultEngine);
if (hwInfo->featureTable.flags.ftrMultiTileArch) {
auto &multiTileArchInfo = hwInfo->gtSystemInfo.MultiTileArchInfo;
multiTileArchInfo.IsValid = true;
multiTileArchInfo.TileCount = multiTileMask.count();
multiTileArchInfo.TileMask = static_cast<uint8_t>(multiTileMask.to_ulong());
}
return std::make_unique<EngineInfo>(&drm, enginesPerTile);
}
inline MemoryRegion createMemoryRegionFromXeMemRegion(const drm_xe_mem_region &xeMemRegion, std::bitset<4> tilesMask) {
MemoryRegion memoryRegion{};
memoryRegion.region.memoryInstance = xeMemRegion.instance;
memoryRegion.region.memoryClass = xeMemRegion.mem_class;
memoryRegion.probedSize = xeMemRegion.total_size;
memoryRegion.unallocatedSize = xeMemRegion.total_size - xeMemRegion.used;
memoryRegion.tilesMask = tilesMask;
return memoryRegion;
}
std::unique_ptr<MemoryInfo> IoctlHelperXe::createMemoryInfo() {
auto memUsageData = queryData<uint64_t>(DRM_XE_DEVICE_QUERY_MEM_REGIONS);
if (memUsageData.empty()) {
return {};
}
constexpr auto maxSupportedTilesNumber{4u};
std::array<std::bitset<maxSupportedTilesNumber>, 64> regionTilesMask{};
for (auto i{0u}; i < xeGtListData->num_gt; i++) {
const auto >Entry = xeGtListData->gt_list[i];
if (gtEntry.type != DRM_XE_QUERY_GT_TYPE_MAIN) {
continue;
}
uint64_t nearMemRegions{gtEntry.near_mem_regions};
auto regionIndex{Math::log2(nearMemRegions)};
regionTilesMask[regionIndex].set(gtEntry.tile_id);
}
MemoryInfo::RegionContainer regionsContainer{};
auto xeMemRegionsData = reinterpret_cast<drm_xe_query_mem_regions *>(memUsageData.data());
for (auto i = 0u; i < xeMemRegionsData->num_mem_regions; i++) {
auto &xeMemRegion{xeMemRegionsData->mem_regions[i]};
if (xeMemRegion.mem_class == DRM_XE_MEM_REGION_CLASS_SYSMEM) {
// Make sure sysmem is always put at the first position
regionsContainer.insert(regionsContainer.begin(), createMemoryRegionFromXeMemRegion(xeMemRegion, 0u));
} else {
auto regionIndex = xeMemRegion.instance;
UNRECOVERABLE_IF(regionIndex >= regionTilesMask.size());
if (auto tilesMask = regionTilesMask[regionIndex]; tilesMask.any()) {
regionsContainer.push_back(createMemoryRegionFromXeMemRegion(xeMemRegion, tilesMask));
}
}
}
if (regionsContainer.empty()) {
return {};
}
return std::make_unique<MemoryInfo>(regionsContainer, drm);
}
size_t IoctlHelperXe::getLocalMemoryRegionsSize(const MemoryInfo *memoryInfo, uint32_t subDevicesCount, uint32_t tileMask) const {
size_t size = 0;
for (const auto &memoryRegion : memoryInfo->getLocalMemoryRegions()) {
if ((memoryRegion.tilesMask & std::bitset<4>{tileMask}).any()) {
size += memoryRegion.probedSize;
}
}
return size;
}
void IoctlHelperXe::setupIpVersion() {
auto &rootDeviceEnvironment = drm.getRootDeviceEnvironment();
auto hwInfo = rootDeviceEnvironment.getMutableHardwareInfo();
if (auto hwIpVersion = GtIpVersion{}; queryHwIpVersion(hwIpVersion)) {
hwInfo->ipVersion.architecture = hwIpVersion.major;
hwInfo->ipVersion.release = hwIpVersion.minor;
hwInfo->ipVersion.revision = hwIpVersion.revision;
} else {
xeLog("No HW IP version received from drm_xe_gt. Falling back to default value.");
IoctlHelper::setupIpVersion();
}
}
bool IoctlHelperXe::queryHwIpVersion(GtIpVersion >IpVersion) {
auto gtListData = queryData<uint64_t>(DRM_XE_DEVICE_QUERY_GT_LIST);
if (gtListData.empty()) {
return false;
}
auto xeGtListData = reinterpret_cast<drm_xe_query_gt_list *>(gtListData.data());
for (auto i = 0u; i < xeGtListData->num_gt; i++) {
auto >Entry = xeGtListData->gt_list[i];
if (gtEntry.type == DRM_XE_QUERY_GT_TYPE_MEDIA || gtEntry.ip_ver_major == 0u) {
continue;
}
gtIpVersion.major = gtEntry.ip_ver_major;
gtIpVersion.minor = gtEntry.ip_ver_minor;
gtIpVersion.revision = gtEntry.ip_ver_rev;
return true;
}
return false;
}
bool IoctlHelperXe::setGpuCpuTimes(TimeStampData *pGpuCpuTime, OSTime *osTime) {
if (pGpuCpuTime == nullptr || osTime == nullptr) {
return false;
}
drm_xe_device_query deviceQuery = {};
deviceQuery.query = DRM_XE_DEVICE_QUERY_ENGINE_CYCLES;
auto ret = IoctlHelper::ioctl(DrmIoctl::query, &deviceQuery);
if (ret != 0) {
xeLog(" -> IoctlHelperXe::%s s=0x%lx r=%d\n", __FUNCTION__, deviceQuery.size, ret);
return false;
}
std::vector<uint8_t> retVal(deviceQuery.size);
deviceQuery.data = castToUint64(retVal.data());
drm_xe_query_engine_cycles *queryEngineCycles = reinterpret_cast<drm_xe_query_engine_cycles *>(retVal.data());
queryEngineCycles->clockid = CLOCK_MONOTONIC_RAW;
queryEngineCycles->eci = *this->defaultEngine;
ret = IoctlHelper::ioctl(DrmIoctl::query, &deviceQuery);
auto nValidBits = queryEngineCycles->width;
if (osTime->getDeviceTimestampWidth() != 0) {
nValidBits = osTime->getDeviceTimestampWidth();
}
auto gpuTimestampValidBits = maxNBitValue(nValidBits);
auto gpuCycles = queryEngineCycles->engine_cycles & gpuTimestampValidBits;
xeLog(" -> IoctlHelperXe::%s [%d,%d] clockId=0x%x s=0x%lx nValidBits=0x%x gpuCycles=0x%x cpuTimeInNS=0x%x r=%d\n", __FUNCTION__,
queryEngineCycles->eci.engine_class, queryEngineCycles->eci.engine_instance,
queryEngineCycles->clockid, deviceQuery.size, nValidBits, gpuCycles, queryEngineCycles->cpu_timestamp, ret);
pGpuCpuTime->gpuTimeStamp = gpuCycles;
pGpuCpuTime->cpuTimeinNS = queryEngineCycles->cpu_timestamp;
return ret == 0;
}
bool IoctlHelperXe::getTopologyDataAndMap(const HardwareInfo &hwInfo, DrmQueryTopologyData &topologyData, TopologyMap &topologyMap) {
auto queryGtTopology = queryData<uint8_t>(DRM_XE_DEVICE_QUERY_GT_TOPOLOGY);
auto fillMask = [](std::vector<std::bitset<8>> &vec, drm_xe_query_topology_mask *topo) {
for (uint32_t j = 0; j < topo->num_bytes; j++) {
vec.push_back(topo->mask[j]);
}
};
StackVec<std::vector<std::bitset<8>>, 2> geomDss;
StackVec<std::vector<std::bitset<8>>, 2> computeDss;
StackVec<std::vector<std::bitset<8>>, 2> euDss;
StackVec<std::vector<std::bitset<8>>, 2> l3Banks;
auto topologySize = queryGtTopology.size();
auto dataPtr = queryGtTopology.data();
auto numTiles = tileIdToGtId.size();
geomDss.resize(numTiles);
computeDss.resize(numTiles);
euDss.resize(numTiles);
l3Banks.resize(numTiles);
bool receivedDssInfo = false;
while (topologySize >= sizeof(drm_xe_query_topology_mask)) {
drm_xe_query_topology_mask *topo = reinterpret_cast<drm_xe_query_topology_mask *>(dataPtr);
UNRECOVERABLE_IF(topo == nullptr);
uint32_t gtId = topo->gt_id;
auto tileId = gtIdToTileId[gtId];
if (tileId != invalidIndex) {
switch (topo->type) {
case DRM_XE_TOPO_DSS_GEOMETRY:
fillMask(geomDss[tileId], topo);
receivedDssInfo = true;
break;
case DRM_XE_TOPO_DSS_COMPUTE:
fillMask(computeDss[tileId], topo);
receivedDssInfo = true;
break;
case DRM_XE_TOPO_L3_BANK:
fillMask(l3Banks[tileId], topo);
break;
case DRM_XE_TOPO_EU_PER_DSS:
case DRM_XE_TOPO_SIMD16_EU_PER_DSS:
fillMask(euDss[tileId], topo);
break;
default:
xeLog("Unhandle GT Topo type: %d\n", topo->type);
}
}
uint32_t itemSize = sizeof(drm_xe_query_topology_mask) + topo->num_bytes;
topologySize -= itemSize;
dataPtr = ptrOffset(dataPtr, itemSize);
}
int sliceCount = 0;
int subSliceCount = 0;
int euPerDss = 0;
int l3BankCount = 0;
uint32_t hwMaxSubSliceCount = hwInfo.gtSystemInfo.MaxSubSlicesSupported;
topologyData.maxSlices = hwInfo.gtSystemInfo.MaxSlicesSupported ? hwInfo.gtSystemInfo.MaxSlicesSupported : 1;
topologyData.maxSubSlicesPerSlice = hwMaxSubSliceCount / topologyData.maxSlices;
for (auto tileId = 0u; tileId < numTiles; tileId++) {
int subSliceCountPerTile = 0;
std::vector<int> sliceIndices;
std::vector<int> subSliceIndices;
int previouslyEnabledSlice = -1;
auto processSubSliceInfo = [&](const std::vector<std::bitset<8>> &subSliceInfo) -> void {
for (auto subSliceId = 0u; subSliceId < std::min(hwMaxSubSliceCount, static_cast<uint32_t>(subSliceInfo.size() * 8)); subSliceId++) {
auto byte = subSliceId / 8;
auto bit = subSliceId & 0b111;
int sliceId = static_cast<int>(subSliceId / topologyData.maxSubSlicesPerSlice);
if (subSliceInfo[byte].test(bit)) {
subSliceIndices.push_back(subSliceId);
subSliceCountPerTile++;
if (sliceId != previouslyEnabledSlice) {
previouslyEnabledSlice = sliceId;
sliceIndices.push_back(sliceId);
}
}
}
};
processSubSliceInfo(computeDss[tileId]);
if (subSliceCountPerTile == 0) {
processSubSliceInfo(geomDss[tileId]);
}
topologyMap[tileId].sliceIndices = std::move(sliceIndices);
if (topologyMap[tileId].sliceIndices.size() < 2u) {
topologyMap[tileId].subsliceIndices = std::move(subSliceIndices);
}
int sliceCountPerTile = static_cast<int>(topologyMap[tileId].sliceIndices.size());
int euPerDssPerTile = 0;
for (auto byte = 0u; byte < euDss[tileId].size(); byte++) {
euPerDssPerTile += euDss[tileId][byte].count();
}
int l3BankCountPerTile = 0;
for (auto byte = 0u; byte < l3Banks[tileId].size(); byte++) {
l3BankCountPerTile += l3Banks[tileId][byte].count();
}
// pick smallest config
sliceCount = (sliceCount == 0) ? sliceCountPerTile : std::min(sliceCount, sliceCountPerTile);
subSliceCount = (subSliceCount == 0) ? subSliceCountPerTile : std::min(subSliceCount, subSliceCountPerTile);
euPerDss = (euPerDss == 0) ? euPerDssPerTile : std::min(euPerDss, euPerDssPerTile);
l3BankCount = (l3BankCount == 0) ? l3BankCountPerTile : std::min(l3BankCount, l3BankCountPerTile);
// pick max config
topologyData.maxEusPerSubSlice = std::max(topologyData.maxEusPerSubSlice, euPerDssPerTile);
}
topologyData.sliceCount = sliceCount;
topologyData.subSliceCount = subSliceCount;
topologyData.euCount = subSliceCount * euPerDss;
topologyData.numL3Banks = l3BankCount;
return receivedDssInfo;
}
void IoctlHelperXe::updateBindInfo(uint64_t userPtr) {
std::unique_lock<std::mutex> lock(xeLock);
BindInfo b = {userPtr, 0};
bindInfo.push_back(b);
}
uint16_t IoctlHelperXe::getDefaultEngineClass(const aub_stream::EngineType &defaultEngineType) {
if (defaultEngineType == aub_stream::EngineType::ENGINE_CCS) {
return DRM_XE_ENGINE_CLASS_COMPUTE;
} else if (defaultEngineType == aub_stream::EngineType::ENGINE_RCS) {
return DRM_XE_ENGINE_CLASS_RENDER;
} else {
/* So far defaultEngineType is either ENGINE_RCS or ENGINE_CCS */
UNRECOVERABLE_IF(true);
return 0;
}
}
/**
* @brief returns caching policy for new allocation.
* For system memory caching policy is write-back, otherwise it's write-combined.
*
* @param[in] allocationInSystemMemory flag that indicates if allocation will be allocated in system memory
*
* @return returns caching policy defined as DRM_XE_GEM_CPU_CACHING_WC or DRM_XE_GEM_CPU_CACHING_WB
*/
uint16_t IoctlHelperXe::getCpuCachingMode(std::optional<bool> isCoherent, bool allocationInSystemMemory) const {
uint16_t cpuCachingMode = DRM_XE_GEM_CPU_CACHING_WC;
if (allocationInSystemMemory) {
if ((isCoherent.value_or(true) == true)) {
cpuCachingMode = DRM_XE_GEM_CPU_CACHING_WB;
}
}
if (debugManager.flags.OverrideCpuCaching.get() != -1) {
cpuCachingMode = debugManager.flags.OverrideCpuCaching.get();
}
return cpuCachingMode;
}
int IoctlHelperXe::createGemExt(const MemRegionsVec &memClassInstances, size_t allocSize, uint32_t &handle, uint64_t patIndex, std::optional<uint32_t> vmId, int32_t pairHandle, bool isChunked, uint32_t numOfChunks, std::optional<uint32_t> memPolicyMode, std::optional<std::vector<unsigned long>> memPolicyNodemask, std::optional<bool> isCoherent) {
struct drm_xe_gem_create create = {};
uint32_t regionsSize = static_cast<uint32_t>(memClassInstances.size());
if (!regionsSize) {
xeLog("memClassInstances empty !\n", "");
return -1;
}
create.size = allocSize;
MemoryClassInstance mem = memClassInstances[regionsSize - 1];
std::bitset<32> memoryInstances{};
bool isSysMemOnly = true;
for (const auto &memoryClassInstance : memClassInstances) {
memoryInstances.set(memoryClassInstance.memoryInstance);
if (memoryClassInstance.memoryClass != drm_xe_memory_class::DRM_XE_MEM_REGION_CLASS_SYSMEM) {
isSysMemOnly = false;
}
}
create.placement = static_cast<uint32_t>(memoryInstances.to_ulong());
create.cpu_caching = this->getCpuCachingMode(isCoherent, isSysMemOnly);
printDebugString(debugManager.flags.PrintBOCreateDestroyResult.get(), stdout, "Performing DRM_IOCTL_XE_GEM_CREATE with {vmid=0x%x size=0x%lx flags=0x%x placement=0x%x caching=%hu }",
create.vm_id, create.size, create.flags, create.placement, create.cpu_caching);
auto ret = IoctlHelper::ioctl(DrmIoctl::gemCreate, &create);
handle = create.handle;
printDebugString(debugManager.flags.PrintBOCreateDestroyResult.get(), stdout, "DRM_IOCTL_XE_GEM_CREATE has returned: %d BO-%u with size: %lu\n", ret, handle, create.size);
xeLog(" -> IoctlHelperXe::%s [%d,%d] vmid=0x%x s=0x%lx f=0x%x p=0x%x h=0x%x c=%hu r=%d\n", __FUNCTION__,
mem.memoryClass, mem.memoryInstance,
create.vm_id, create.size, create.flags, create.placement, handle, create.cpu_caching, ret);
return ret;
}
uint32_t IoctlHelperXe::createGem(uint64_t size, uint32_t memoryBanks, std::optional<bool> isCoherent) {
struct drm_xe_gem_create create = {};
create.size = size;
auto pHwInfo = drm.getRootDeviceEnvironment().getHardwareInfo();
auto memoryInfo = drm.getMemoryInfo();
std::bitset<32> memoryInstances{};
auto banks = std::bitset<4>(memoryBanks);
size_t currentBank = 0;
size_t i = 0;
bool isSysMemOnly = true;
while (i < banks.count()) {
if (banks.test(currentBank)) {
auto regionClassAndInstance = memoryInfo->getMemoryRegionClassAndInstance(1u << currentBank, *pHwInfo);
memoryInstances.set(regionClassAndInstance.memoryInstance);
if (regionClassAndInstance.memoryClass != drm_xe_memory_class::DRM_XE_MEM_REGION_CLASS_SYSMEM) {
isSysMemOnly = false;
}
i++;
}
currentBank++;
}
if (memoryBanks == 0) {
auto regionClassAndInstance = memoryInfo->getMemoryRegionClassAndInstance(memoryBanks, *pHwInfo);
memoryInstances.set(regionClassAndInstance.memoryInstance);
}
create.placement = static_cast<uint32_t>(memoryInstances.to_ulong());
create.cpu_caching = this->getCpuCachingMode(isCoherent, isSysMemOnly);
printDebugString(debugManager.flags.PrintBOCreateDestroyResult.get(), stdout, "Performing DRM_IOCTL_XE_GEM_CREATE with {vmid=0x%x size=0x%lx flags=0x%x placement=0x%x caching=%hu }",
create.vm_id, create.size, create.flags, create.placement, create.cpu_caching);
[[maybe_unused]] auto ret = ioctl(DrmIoctl::gemCreate, &create);
printDebugString(debugManager.flags.PrintBOCreateDestroyResult.get(), stdout, "DRM_IOCTL_XE_GEM_CREATE has returned: %d BO-%u with size: %lu\n", ret, create.handle, create.size);
xeLog(" -> IoctlHelperXe::%s vmid=0x%x s=0x%lx f=0x%x p=0x%x h=0x%x c=%hu r=%d\n", __FUNCTION__,
create.vm_id, create.size, create.flags, create.placement, create.handle, create.cpu_caching, ret);
DEBUG_BREAK_IF(ret != 0);
return create.handle;
}
CacheRegion IoctlHelperXe::closAlloc(CacheLevel cacheLevel) {
xeLog(" -> IoctlHelperXe::%s\n", __FUNCTION__);
return CacheRegion::none;
}
uint16_t IoctlHelperXe::closAllocWays(CacheRegion closIndex, uint16_t cacheLevel, uint16_t numWays) {
xeLog(" -> IoctlHelperXe::%s\n", __FUNCTION__);
return 0;
}
CacheRegion IoctlHelperXe::closFree(CacheRegion closIndex) {
xeLog(" -> IoctlHelperXe::%s\n", __FUNCTION__);
return CacheRegion::none;
}
void IoctlHelperXe::setupXeWaitUserFenceStruct(void *arg, uint32_t ctxId, uint16_t op, uint64_t addr, uint64_t value, int64_t timeout) {
auto waitUserFence = reinterpret_cast<drm_xe_wait_user_fence *>(arg);
waitUserFence->addr = addr;
waitUserFence->op = op;
waitUserFence->value = value;
waitUserFence->mask = std::numeric_limits<uint64_t>::max();
waitUserFence->timeout = timeout;
waitUserFence->exec_queue_id = ctxId;
}
int IoctlHelperXe::xeWaitUserFence(uint32_t ctxId, uint16_t op, uint64_t addr, uint64_t value, int64_t timeout, bool userInterrupt, uint32_t externalInterruptId, GraphicsAllocation *allocForInterruptWait) {
UNRECOVERABLE_IF(addr == 0x0)
drm_xe_wait_user_fence waitUserFence = {};
setupXeWaitUserFenceStruct(&waitUserFence, ctxId, op, addr, value, timeout);
auto retVal = IoctlHelper::ioctl(DrmIoctl::gemWaitUserFence, &waitUserFence);
xeLog(" -> IoctlHelperXe::%s a=0x%llx v=0x%llx T=0x%llx F=0x%x ctx=0x%x retVal=0x%x\n", __FUNCTION__,
addr, value, timeout, waitUserFence.flags, ctxId, retVal);
return retVal;
}
int IoctlHelperXe::waitUserFence(uint32_t ctxId, uint64_t address,
uint64_t value, uint32_t dataWidth, int64_t timeout, uint16_t flags,
bool userInterrupt, uint32_t externalInterruptId, GraphicsAllocation *allocForInterruptWait) {
xeLog(" -> IoctlHelperXe::%s a=0x%llx v=0x%llx w=0x%x T=0x%llx F=0x%x ctx=0x%x\n", __FUNCTION__, address, value, dataWidth, timeout, flags, ctxId);
UNRECOVERABLE_IF(dataWidth != static_cast<uint32_t>(Drm::ValueWidth::u64));
if (address) {
return xeWaitUserFence(ctxId, DRM_XE_UFENCE_WAIT_OP_GTE, address, value, timeout, userInterrupt, externalInterruptId, allocForInterruptWait);
}
return 0;
}
uint32_t IoctlHelperXe::getAtomicAdvise(bool isNonAtomic) {
xeLog(" -> IoctlHelperXe::%s\n", __FUNCTION__);
return 0;
}
uint32_t IoctlHelperXe::getAtomicAccess(AtomicAccessMode mode) {
xeLog(" -> IoctlHelperXe::%s\n", __FUNCTION__);
return 0;
}
uint32_t IoctlHelperXe::getPreferredLocationAdvise() {
xeLog(" -> IoctlHelperXe::%s\n", __FUNCTION__);
return 0;
}
std::optional<MemoryClassInstance> IoctlHelperXe::getPreferredLocationRegion(PreferredLocation memoryLocation, uint32_t memoryInstance) {
return std::nullopt;
}
bool IoctlHelperXe::setVmBoAdvise(int32_t handle, uint32_t attribute, void *region) {
xeLog(" -> IoctlHelperXe::%s\n", __FUNCTION__);
// There is no vmAdvise attribute in Xe, so return success
return true;
}
bool IoctlHelperXe::setVmBoAdviseForChunking(int32_t handle, uint64_t start, uint64_t length, uint32_t attribute, void *region) {
xeLog(" -> IoctlHelperXe::%s\n", __FUNCTION__);
// There is no vmAdvise attribute in Xe, so return success
return true;
}
bool IoctlHelperXe::setVmPrefetch(uint64_t start, uint64_t length, uint32_t region, uint32_t vmId) {
xeLog(" -> IoctlHelperXe::%s s=0x%llx l=0x%llx vmid=0x%x\n", __FUNCTION__, start, length, vmId);
drm_xe_vm_bind bind = {};
bind.vm_id = vmId;
bind.num_binds = 1;
bind.bind.range = length;
bind.bind.addr = start;
bind.bind.op = DRM_XE_VM_BIND_OP_PREFETCH;
auto pHwInfo = this->drm.getRootDeviceEnvironment().getHardwareInfo();
constexpr uint32_t subDeviceMaskSize = DeviceBitfield().size();
constexpr uint32_t subDeviceMaskMax = (1u << subDeviceMaskSize) - 1u;
uint32_t subDeviceId = region & subDeviceMaskMax;
DeviceBitfield subDeviceMask = (1u << subDeviceId);
MemoryClassInstance regionInstanceClass = this->drm.getMemoryInfo()->getMemoryRegionClassAndInstance(subDeviceMask, *pHwInfo);
bind.bind.prefetch_mem_region_instance = regionInstanceClass.memoryInstance;
int ret = IoctlHelper::ioctl(DrmIoctl::gemVmBind, &bind);
xeLog(" vm=%d addr=0x%lx range=0x%lx region=0x%x operation=%d(%s) ret=%d\n",
bind.vm_id,
bind.bind.addr,
bind.bind.range,
bind.bind.prefetch_mem_region_instance,
bind.bind.op,
xeGetBindOperationName(bind.bind.op),
ret);
if (ret != 0) {
xeLog("error: %s ret=%d\n", xeGetBindOperationName(bind.bind.op), ret);
return false;
}
return true;
}
uint32_t IoctlHelperXe::getDirectSubmissionFlag() {
xeLog(" -> IoctlHelperXe::%s\n", __FUNCTION__);
return 0;
}
uint16_t IoctlHelperXe::getWaitUserFenceSoftFlag() {
xeLog(" -> IoctlHelperXe::%s\n", __FUNCTION__);
return 0;
};
void IoctlHelperXe::fillExecObject(ExecObject &execObject, uint32_t handle, uint64_t gpuAddress, uint32_t drmContextId, bool bindInfo, bool isMarkedForCapture) {
auto execObjectXe = reinterpret_cast<ExecObjectXe *>(execObject.data);
execObjectXe->gpuAddress = gpuAddress;
execObjectXe->handle = handle;
}
void IoctlHelperXe::logExecObject(const ExecObject &execObject, std::stringstream &logger, size_t size) {
auto execObjectXe = reinterpret_cast<const ExecObjectXe *>(execObject.data);
logger << "ExecBufferXe = { handle: BO-" << execObjectXe->handle
<< ", address range: 0x" << reinterpret_cast<void *>(execObjectXe->gpuAddress) << " }\n";
}
void IoctlHelperXe::fillExecBuffer(ExecBuffer &execBuffer, uintptr_t buffersPtr, uint32_t bufferCount, uint32_t startOffset, uint32_t size, uint64_t flags, uint32_t drmContextId) {
auto execBufferXe = reinterpret_cast<ExecBufferXe *>(execBuffer.data);
execBufferXe->execObject = reinterpret_cast<ExecObjectXe *>(buffersPtr);
execBufferXe->startOffset = startOffset;
execBufferXe->drmContextId = drmContextId;
}
void IoctlHelperXe::logExecBuffer(const ExecBuffer &execBuffer, std::stringstream &logger) {
auto execBufferXe = reinterpret_cast<const ExecBufferXe *>(execBuffer.data);
logger << "ExecBufferXe { "
<< "exec object: " + std::to_string(reinterpret_cast<uintptr_t>(execBufferXe->execObject))
<< ", start offset: " + std::to_string(execBufferXe->startOffset)
<< ", drm context id: " + std::to_string(execBufferXe->drmContextId)
<< " }\n";
}
int IoctlHelperXe::execBuffer(ExecBuffer *execBuffer, uint64_t completionGpuAddress, TaskCountType counterValue) {
xeLog(" -> IoctlHelperXe::%s\n", __FUNCTION__);
int ret = 0;
if (execBuffer) {
auto execBufferXe = reinterpret_cast<ExecBufferXe *>(execBuffer->data);
if (execBufferXe) {
auto execObject = execBufferXe->execObject;
uint32_t engine = execBufferXe->drmContextId;
xeLog("EXEC ofs=%d ctx=0x%x ptr=0x%p\n",
execBufferXe->startOffset, execBufferXe->drmContextId, execBufferXe->execObject);
xeLog(" -> IoctlHelperXe::%s CA=0x%llx v=0x%x ctx=0x%x\n", __FUNCTION__,
completionGpuAddress, counterValue, engine);
struct drm_xe_sync sync[1] = {};
sync[0].type = DRM_XE_SYNC_TYPE_USER_FENCE;
sync[0].flags = DRM_XE_SYNC_FLAG_SIGNAL;
sync[0].addr = completionGpuAddress;
sync[0].timeline_value = counterValue;
struct drm_xe_exec exec = {};
exec.exec_queue_id = engine;
exec.num_syncs = 1;
exec.syncs = reinterpret_cast<uintptr_t>(&sync);
exec.address = execObject->gpuAddress + execBufferXe->startOffset;
exec.num_batch_buffer = 1;
ret = IoctlHelper::ioctl(DrmIoctl::gemExecbuffer2, &exec);
xeLog("r=0x%x batch=0x%lx\n", ret, exec.address);
if (debugManager.flags.PrintCompletionFenceUsage.get()) {
std::cout << "Completion fence submitted."
<< " GPU address: " << std::hex << completionGpuAddress << std::dec
<< ", value: " << counterValue << std::endl;
}
}
}
return ret;
}
bool IoctlHelperXe::completionFenceExtensionSupported(const bool isVmBindAvailable) {
xeLog(" -> IoctlHelperXe::%s\n", __FUNCTION__);
return isVmBindAvailable;
}
uint64_t IoctlHelperXe::getFlagsForVmBind(bool bindCapture, bool bindImmediate, bool bindMakeResident, bool bindLock, bool readOnlyResource) {
uint64_t flags = 0;
xeLog(" -> IoctlHelperXe::%s %d %d %d %d %d\n", __FUNCTION__, bindCapture, bindImmediate, bindMakeResident, bindLock, readOnlyResource);
if (bindCapture) {
flags |= DRM_XE_VM_BIND_FLAG_DUMPABLE;
}
if (bindImmediate) {
flags |= DRM_XE_VM_BIND_FLAG_IMMEDIATE;
}
if (readOnlyResource) {
flags |= DRM_XE_VM_BIND_FLAG_READONLY;
}
if (bindMakeResident) {
flags |= DRM_XE_VM_BIND_FLAG_IMMEDIATE;
}
return flags;
}
int IoctlHelperXe::queryDistances(std::vector<QueryItem> &queryItems, std::vector<DistanceInfo> &distanceInfos) {
xeLog(" -> IoctlHelperXe::%s\n", __FUNCTION__);
return 0;
}
bool IoctlHelperXe::isPageFaultSupported() {
xeLog(" -> IoctlHelperXe::%s %d\n", __FUNCTION__, false);
return false;
};
uint32_t IoctlHelperXe::getEuStallFdParameter() {
xeLog(" -> IoctlHelperXe::%s\n", __FUNCTION__);
return 0u;
}
std::unique_ptr<uint8_t[]> IoctlHelperXe::createVmControlExtRegion(const std::optional<MemoryClassInstance> ®ionInstanceClass) {
xeLog(" -> IoctlHelperXe::%s\n", __FUNCTION__);
return {};
}
uint32_t IoctlHelperXe::getFlagsForVmCreate(bool disableScratch, bool enablePageFault, bool useVmBind) {
xeLog(" -> IoctlHelperXe::%s %d,%d,%d\n", __FUNCTION__, disableScratch, enablePageFault, useVmBind);
uint32_t flags = DRM_XE_VM_CREATE_FLAG_LR_MODE;
if (enablePageFault) {
flags |= DRM_XE_VM_CREATE_FLAG_FAULT_MODE;
}
return flags;
}
uint32_t IoctlHelperXe::createContextWithAccessCounters(GemContextCreateExt &gcc) {
xeLog(" -> IoctlHelperXe::%s\n", __FUNCTION__);
return 0;
}
uint32_t IoctlHelperXe::createCooperativeContext(GemContextCreateExt &gcc) {
xeLog(" -> IoctlHelperXe::%s\n", __FUNCTION__);
return 0;
}
void IoctlHelperXe::fillVmBindExtSetPat(VmBindExtSetPatT &vmBindExtSetPat, uint64_t patIndex, uint64_t nextExtension) {
xeLog(" -> IoctlHelperXe::%s\n", __FUNCTION__);
}
void IoctlHelperXe::fillVmBindExtUserFence(VmBindExtUserFenceT &vmBindExtUserFence, uint64_t fenceAddress, uint64_t fenceValue, uint64_t nextExtension) {
xeLog(" -> IoctlHelperXe::%s 0x%lx 0x%lx\n", __FUNCTION__, fenceAddress, fenceValue);
auto xeBindExtUserFence = reinterpret_cast<UserFenceExtension *>(vmBindExtUserFence);
UNRECOVERABLE_IF(!xeBindExtUserFence);
xeBindExtUserFence->tag = UserFenceExtension::tagValue;
xeBindExtUserFence->addr = fenceAddress;
xeBindExtUserFence->value = fenceValue;
}
void IoctlHelperXe::setVmBindUserFence(VmBindParams &vmBind, VmBindExtUserFenceT vmBindUserFence) {
xeLog(" -> IoctlHelperXe::%s\n", __FUNCTION__);
vmBind.userFence = castToUint64(vmBindUserFence);
return;