-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathassem_mat_vect_gio_stab_adapt.asv
192 lines (162 loc) · 7.05 KB
/
assem_mat_vect_gio_stab_adapt.asv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
function [A,rhs] = assem_mat_vect_gio_stab_adapt(vertices,elements,boundaries,g,dt,un,vn,cn,una,vna,cna,theta,coeff,h0,h_k,f1,f2,f3,wdn,omega,time...
,un_old,vn_old,cn_old,cn_vecchia,nx_nodes,ny_nodes,wetnodes,frontnodes,frontwettednodes,littlewetnodes,drynodes,save_path)
%
% assembla la matrice globale e il termine noto del sistema
% con operazioni vettoriali
nov = size(vertices,2);
noe=size(elements,2);
% matrice di advezione: \int_T (\alpha U \cdot grad \phi_j) \phi_i
% A_adve_alpha = ass_adve(vertices,elements,un,vn,alpha,1);
% matrice di advezione: \int_T (U \cdot grad \phi_j) \phi_i
A_adve = ass_adve(vertices,elements,una,vna,omega,1,2);
% A_adve_delta = ass_adve(vertices,elements,un,vn,delta,2);
% matrici:
% Gx = \int_T g d(\phi_j)/dx \phi_i
% Gy = \int_T g d(\phi_j)/dy \phi_i
[Gx,Gy] = ass_grad(vertices,elements,omega,cna*0.5,2);
GxMom=Gx; GyMom=Gy;
% Per spegnere il termine con c/2 grad c nell'eq del momento sul fronte
% GxMom(frontnodes,:) = 0;
% GyMom(frontnodes,:) = 0;
% GxMom(littlewetnodes,:) = 0;
% GyMom(littlewetnodes,:) = 0;
% GxMom(drynodes,:) = 0;
% GyMom(drynodes,:) = 0;
% matrici:
% Hx = \int_T H d(\phi_j)/dx \phi_i
% Hy = \int_T H d(\phi_j)/dy \phi_i
% [Hx,Hy] = ass_grad(vertices,elements,1,cn/2,1);
% matrice di massa
M=ass_massa(vertices,elements,omega,1,2);
% matrice associata alle resistenze al fondo
% Fr = ass_massa(vertices,elements,omega,coeff,2);
%
% matrice nulla
Zero = sparse(nov,nov);
% rhs_fr = [Fr , Zero ;
% Zero , Fr ]* [una;vna];
% rhs_fr = [coeff'.*una;coeff'.*vna];
[rhs_x,rhs_y,rhs_3] = ass_rhs_g(vertices,elements,f1,f2,f3,4);
[rhs_frx,rhs_fry] = ass_rhs_fr(vertices,elements,coeff,un,vn,4);
rhs_fr = [rhs_frx;rhs_fry];
% [Fx,Fy] = ass_grad(vertices,elements,1,c0*0.5,1);
% rhs_x = Fx*c0;
% rhs_y = Fy*c0;
% contorni impermeabili
[N11,N12,N21,N22] = ass_normali_penalty(vertices,elements,nx_nodes,ny_nodes,2);
gamma = 1e10;
N = gamma*[N11 , N12 , Zero;
N21 , N22 , Zero;
Zero, Zero, Zero];
% matrice di massa a blocchi
M3 = [M , Zero, Zero ;
Zero , M , Zero ;
Zero , Zero, M];
% matrice finale
% Dx=Hx-F_x;
% Dy=Hy-F_y;
A = [A_adve ,Zero ,GxMom ;
Zero ,A_adve ,GyMom ;
Gx ,Gy ,A_adve];
% A = A + [Fr , Zero , Zero ;
% Zero , Fr , Zero ;
% Zero , Zero , Zero ];
%
%
A = A + N;
%parametro e matrici stabilizazzione
% Porre delta_s=0 per spegnere tutta la stabilizzazione: sia streamline
% diffusion, sia shock capturing (per spegnere solo shock capturing agire
% in assem_mi, per spegnere solo streamline diffusion BOH)
% delta_s = max(h_k);
delta_s = 1;
% delta_s = 0;
theta_s = theta;
[M_Lh,Lh,f_Lh] = assem_mat_GLS_simm1(vertices,elements,boundaries,g,una,vna,cna,coeff,f1,f2,f3,theta,dt,h_k,omega,time,un,vn,cn,un,vn,drynodes,save_path);
% % Per spegnare la gravità sui frontnodes
% rhs_x(frontnodes) = 0*rhs_x(frontnodes);
% rhs_y(frontnodes) = 0*rhs_y(frontnodes);
% rhs_3(frontnodes) = 0*rhs_3(frontnodes);
%
% % Per spegnare la gravità sui littlewetnodes
% rhs_x(littlewetnodes) = 0*rhs_x(littlewetnodes);
% rhs_y(littlewetnodes) = 0*rhs_y(littlewetnodes);
% rhs_3(littlewetnodes) = 0*rhs_3(littlewetnodes);
% Per la correzione di continuità di cui in [Horritt, eq (12)]
% sui nodi completamente bagnati degli elementi parzialmente bagnati
% aggiungere eta*A_elem/2*(dc1/dt+dc2/dt)
eta = 0;
area = nanmean(pdetrg(vertices,elements));
temp = setdiff(frontnodes,frontwettednodes);
[temp1,temp2] = meshgrid(frontnodes,frontnodes);
CC_A = eta*area/2*M.*sparse(temp1,temp2,1,nov,nov);
CC_A = diag(CC_A*ones(nov,1)); % lumping
CC_A = [Zero Zero Zero; Zero Zero Zero; Zero Zero CC_A];
CC_rhs = CC_A*[0.*un;0.*vn;cn];
% % Per modulare la stabilizzazione sul fronte
% delta_front = 0.5;
% Lh(frontnodes,:) = delta_front*Lh(frontnodes,:);
% Lh(:,frontnodes) = delta_front*Lh(:,frontnodes);
% Lh(frontnodes,frontnodes) = Lh(frontnodes,frontnodes) / delta_front;
% M_Lh(frontnodes,:) = delta_front*M_Lh(frontnodes,:);
% M_Lh(:,frontnodes) = delta_front*M_Lh(:,frontnodes);
% M_Lh(frontnodes,frontnodes) = M_Lh(frontnodes,frontnodes) / delta_front;
% f_Lh(frontnodes) = delta_front*f_Lh(frontnodes);
% Per imporre u=umax sui dry
% ESITO PROVE
% 0-1-2-3-4-5 : u oscilla con valori anche negativi. Per forza, non ho
% messo il - davanti al calcolo di val!
% 0bis: u oscilla di bestia
% 1bis-3bis-4bis: u esplode
% 2bis: u oscilla con valori anche negativi
% 5bis-5bis_ogni2Corr: u esplode, però fino a 0.8 h va bene, e poi il problema si genera da y=0
% 5bis_ogni3Corr: come 5 bis, ma con problema che parte anche da y=max, ma un pochino più tardi
% 5bis_ogni4Corr: esplode->salvata lo stesso
% 5bis_ogni5Corr: OK->salvata
[dx_cn_vecchia,dy_cn_vecchia]=pdegrad(vertices,elements,cn_vecchia);
dx_cn_vecchia = pdeprtni(vertices,elements,dx_cn_vecchia);
dy_cn_vecchia = pdeprtni(vertices,elements,dy_cn_vecchia);
val = zeros(nov,1);
% temp = setdiff(wetnodes,frontnodes); % prova 2-2bis
temp = setdiff(frontnodes,frontwettednodes); % prova 3-4 3bis
% val(frontnodes) = (cna(frontnodes)-cn_vecchia(frontnodes))./(dt*dx_cn_vecchia(frontnodes)+eps); %prove <=1
% val(frontnodes) = -(cna(frontnodes)-cn_vecchia(frontnodes))./(dt*dx_cn_vecchia(frontnodes)+eps); %prove 0bis-1bis
% val(temp) = (cna(temp)-cn_vecchia(temp))./(dt*dx_cn_vecchia(temp)+eps); %prova 2
val(temp) = -(cna(temp)-cn_vecchia(temp))./(dt*dx_cn_vecchia(temp)+eps); %prova 2bis
ys = unique(vertices(2,:));
for i=1:length(ys)
% [~,idx] = min(abs(vertices(2,:)-(ymax+ymin)/2));
% ymed = vertices(2,idx);
% idxs_ymed = find(vertices(2,:) == ymed);
idxs = find(vertices(2,:) == ys(i));
% idx_front = max(intersect(idxs,frontnodes)); % prova 0-0bis
% idx_front = min(intersect(idxs,frontnodes)); % prova 1-1bis
idx_front = max(intersect(idxs,temp)); % prova 2-3-5-2bis-5bis
% idx_front = min(intersect(idxs,temp)); % prova 4-4bis
val(idxs(idxs >= idx_front)) = val(idx_front);
end
val'
% val = max(un(setdiff(wetnodes,frontnodes)));
% [V11,V12,V21,V22] = u_fixval_penalty(vertices,elements,val,2);
V11 = M;
V12 = 0.*V11;
V21 = 0.*V11;
V22 = 0.*V11;
% V(un(setdiff([1:nov],drynodes)),un(setdiff([1:nov],drynodes)))=0*V(un(setdiff([1:nov],drynodes)),un(setdiff([1:nov],drynodes)));
% V(un(setdiff([1:nov],drynodes)),:)=0*V(un(setdiff([1:nov],drynodes)),:);
% V(:,un(setdiff([1:nov],drynodes)))=0*V(:,un(setdiff([1:nov],drynodes)));
% V11(setdiff(wetnodes,frontnodes),:)=0; % prova <=4, (<=4)bis
V11(wetnodes,:)=0; % prova 5-5bis
if mod(floor(time/dt),4)~=0
V11 = Zero;
end
% V(:,wetnodes)=0*V(:,wetnodes);
V = gamma*[V11 , V12 , Zero;
V21 , V22 , Zero;
Zero, Zero, Zero];
% rhs_V = V*[val*ones(nov,1); zeros(nov,1); zeros(nov,1)];
rhs_V = V*[val; zeros(nov,1); zeros(nov,1)];
rhs_V(setdiff(wetnodes,frontnodes)) = 0;
% termine noto e matrice IN QUESTO ORDINE
rhs = (M3 - (1-theta)*dt*A)*[un;vn;cn] + delta_s*(M_Lh - dt*(1-theta_s)*Lh)*[un;vn;cn] +dt*([rhs_x;rhs_y;rhs_3] - [rhs_fr;zeros(nov,1)] + delta_s*f_Lh) + CC_rhs + rhs_V;
A = M3 + theta*dt*A + delta_s*(M_Lh + dt*theta_s*Lh) + CC_A + V;