-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
167 lines (130 loc) · 5.13 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras import models
def _encoder(input_layer):
inner = layers.Conv2D(64, (3, 3), padding="same",
activation="relu")(input_layer)
inner = layers.Conv2D(64, (3, 3), padding="same", activation="relu")(inner)
inner = layers.MaxPooling2D((2, 2))(inner)
# block 02
for no_filter in [64, 128]:
inner = layers.Conv2D(
no_filter, (3, 3),
padding="same",
activation="relu",
)(inner)
inner = layers.MaxPooling2D((2, 2))(inner)
# block 03
for _ in range(3):
inner = layers.Conv2D(
256, (3, 3),
padding="same",
activation="relu",
)(inner)
layer_10 = layers.MaxPooling2D((2, 2), name='layer_10')(inner)
# block 04
layer_11 = layers.Conv2D(512, (3, 3), padding="same",
activation="relu")(layer_10)
layer_12 = layers.Conv2D(512, (3, 3), padding="same",
activation="relu")(layer_11)
layer_13 = layers.Conv2D(512, (3, 3), padding="same",
activation="relu")(layer_12)
layer_14 = layers.MaxPooling2D((1, 1))(layer_13)
layer_15 = layers.Conv2D(512, (3, 3), padding="same",
activation="relu", dilation_rate=(2, 2))(layer_14)
layer_16 = layers.Conv2D(512, (3, 3), padding="same",
activation="relu", dilation_rate=(2, 2))(layer_15)
layer_17 = layers.Conv2D(512, (3, 3), padding="same",
activation="relu", dilation_rate=(2, 2))(layer_16)
layer_18 = layers.MaxPooling2D((1, 1))(layer_17)
layer_19 = layers.concatenate([layer_10, layer_14, layer_18])
return layer_19
def _upsample(stack, shape, factor=1):
# image, size
stack = tf.image.resize_bilinear(
stack,
(shape[1] * factor, shape[2] * factor)
)
return stack
# ASPP
def _aspp(inner_layer):
branch_01 = layers.Conv2D(
256, (1, 1), padding="same", activation=None
)(inner_layer)
branch_01 = layers.BatchNormalization()(branch_01)
branch_01 = layers.Activation("relu")(branch_01)
branch_02 = layers.Conv2D(
256, (3, 3), padding="same", activation=None, dilation_rate=(4, 4)
)(inner_layer)
branch_02 = layers.BatchNormalization()(branch_02)
branch_02 = layers.Activation("relu")(branch_02)
branch_03 = layers.Conv2D(
256, (3, 3), padding="same", activation=None, dilation_rate=(8, 8)
)(inner_layer)
branch_03 = layers.BatchNormalization()(branch_03)
branch_03 = layers.Activation("relu")(branch_03)
branch_04 = layers.Conv2D(
256, (3, 3), padding="same", activation=None, dilation_rate=(12, 12)
)(inner_layer)
branch_04 = layers.BatchNormalization()(branch_04)
branch_04 = layers.Activation("relu")(branch_04)
# image-level feature
branch_05 = layers.GlobalAveragePooling2D()(inner_layer)
branch_05 = layers.Reshape((1, 1, branch_05.get_shape()[1]))(branch_05)
# reduce depth size of feature map: 1280 --> 256
branch_05 = layers.Conv2D(
256, (1, 1), padding="valid", activation=None
)(branch_05)
branch_05 = layers.BatchNormalization()(branch_05)
branch_05 = layers.Activation("relu")(branch_05)
# bilinear upsampling
shape = inner_layer.get_shape()
branch_05 = _upsample(branch_05, shape, 1)
branch_aspp = layers.concatenate(
[branch_01, branch_02, branch_03, branch_04, branch_05]
)
branch_aspp = layers.Conv2D(
256, (1, 1), padding="same", activation=None
)(branch_aspp)
branch_aspp = layers.BatchNormalization()(branch_aspp)
branch_aspp = layers.Activation("relu")(branch_aspp)
return branch_aspp
# DECODER
def _decoder(aspp_layer):
deco_01 = _upsample(aspp_layer, aspp_layer.get_shape(), 2)
deco_01 = layers.Conv2D(
128, (3, 3), padding="same", activation="relu"
)(deco_01)
deco_02 = _upsample(deco_01, deco_01.get_shape(), 2)
deco_02 = layers.Conv2D(
64, (3, 3), padding="same", activation="relu"
)(deco_02)
deco_03 = _upsample(deco_02, deco_02.get_shape(), 2)
deco_03 = layers.Conv2D(
32, (3, 3), padding="same", activation="relu"
)(deco_03)
deco_out = layers.Conv2D(
1, (3, 3), padding="same", activation=None
)(deco_03)
print(deco_out.get_shape())
return deco_out
def _normalize(maps, eps=1e-7):
min_per_image = tf.reduce_min(
maps, axis=(1, 2, 3), keep_dims=True)
maps -= min_per_image
max_per_image = tf.reduce_max(
maps, axis=(1, 2, 3), keep_dims=True)
maps = tf.divide(maps, eps + max_per_image)
return maps
def saliency_net(img_size=(240, 320, 3)):
input_layer = layers.Input(
name='input_image', shape=img_size, dtype='float32')
layer_19 = _encoder(input_layer)
aspp_layer = _aspp(layer_19)
deco_out = _decoder(aspp_layer)
output_layer = _normalize(deco_out)
net = models.Model(inputs=[input_layer], outputs=output_layer)
return net
if __name__ == '__main__':
net = saliency_net()
print(net.count_params(), net.inputs, net.outputs)