You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
D:\NERF\BakedSDF\torch-bakedsdf-main\torch-bakedsdf-main>python launch.py --config configs/neus-colmap.yaml --gpu 0 --train
Global seed set to 42
Using 16bit native Automatic Mixed Precision (AMP)
GPU available: True, used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
`Trainer(limit_train_batches=1.0)` was configured so 100% of the batches per epoch will be used..
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
fatal: not a git repository (or any of the parent directories): .git
D:\NERF\BakedSDF\torch-bakedsdf-main\torch-bakedsdf-main\utils\callbacks.py:76: UserWarning: Code snapshot is not saved. Please make sure you have git installed and are in a git repository.
rank_zero_warn("Code snapshot is not saved. Please make sure you have git installed and are in a git repository.")
| Name | Type | Params
------------------------------------
0 | model | NeuSModel | 28.0 M
------------------------------------
28.0 M Trainable params
0 Non-trainable params
28.0 M Total params
55.913 Total estimated model params size (MB)
Traceback (most recent call last):
File "D:\NERF\BakedSDF\torch-bakedsdf-main\torch-bakedsdf-main\launch.py", line 130, in <module>
main()
File "D:\NERF\BakedSDF\torch-bakedsdf-main\torch-bakedsdf-main\launch.py", line 119, in main
trainer.fit(system, datamodule=dm)
File "C:\Users\B\AppData\Local\Programs\Python\Python39\lib\site-packages\pytorch_lightning\trainer\trainer.py", line 770, in fit
self._call_and_handle_interrupt(
File "C:\Users\B\AppData\Local\Programs\Python\Python39\lib\site-packages\pytorch_lightning\trainer\trainer.py", line 723, in _call_and_handle_interrupt
return trainer_fn(*args, **kwargs)
File "C:\Users\B\AppData\Local\Programs\Python\Python39\lib\site-packages\pytorch_lightning\trainer\trainer.py", line 811, in _fit_impl
results = self._run(model, ckpt_path=self.ckpt_path)
File "C:\Users\B\AppData\Local\Programs\Python\Python39\lib\site-packages\pytorch_lightning\trainer\trainer.py", line 1236, in _run
results = self._run_stage()
File "C:\Users\B\AppData\Local\Programs\Python\Python39\lib\site-packages\pytorch_lightning\trainer\trainer.py", line 1323, in _run_stage
return self._run_train()
File "C:\Users\B\AppData\Local\Programs\Python\Python39\lib\site-packages\pytorch_lightning\trainer\trainer.py", line 1353, in _run_train
self.fit_loop.run()
File "C:\Users\B\AppData\Local\Programs\Python\Python39\lib\site-packages\pytorch_lightning\loops\base.py", line 204, in run
self.advance(*args, **kwargs)
File "C:\Users\B\AppData\Local\Programs\Python\Python39\lib\site-packages\pytorch_lightning\loops\fit_loop.py", line 266, in advance
self._outputs = self.epoch_loop.run(self._data_fetcher)
File "C:\Users\B\AppData\Local\Programs\Python\Python39\lib\site-packages\pytorch_lightning\loops\base.py", line 204, in run
self.advance(*args, **kwargs)
File "C:\Users\B\AppData\Local\Programs\Python\Python39\lib\site-packages\pytorch_lightning\loops\epoch\training_epoch_loop.py", line 208, in advance
batch_output = self.batch_loop.run(batch, batch_idx)
File "C:\Users\B\AppData\Local\Programs\Python\Python39\lib\site-packages\pytorch_lightning\loops\base.py", line 204, in run
self.advance(*args, **kwargs)
File "C:\Users\B\AppData\Local\Programs\Python\Python39\lib\site-packages\pytorch_lightning\loops\batch\training_batch_loop.py", line 88, in advance
outputs = self.optimizer_loop.run(split_batch, optimizers, batch_idx)
File "C:\Users\B\AppData\Local\Programs\Python\Python39\lib\site-packages\pytorch_lightning\loops\base.py", line 204, in run
self.advance(*args, **kwargs)
File "C:\Users\B\AppData\Local\Programs\Python\Python39\lib\site-packages\pytorch_lightning\loops\optimization\optimizer_loop.py", line 203, in advance
result = self._run_optimization(
File "C:\Users\B\AppData\Local\Programs\Python\Python39\lib\site-packages\pytorch_lightning\loops\optimization\optimizer_loop.py", line 256, in _run_optimization
self._optimizer_step(optimizer, opt_idx, batch_idx, closure)
File "C:\Users\B\AppData\Local\Programs\Python\Python39\lib\site-packages\pytorch_lightning\loops\optimization\optimizer_loop.py", line 369, in _optimizer_step
self.trainer._call_lightning_module_hook(
File "C:\Users\B\AppData\Local\Programs\Python\Python39\lib\site-packages\pytorch_lightning\trainer\trainer.py", line 1595, in _call_lightning_module_hook
output = fn(*args, **kwargs)
File "C:\Users\B\AppData\Local\Programs\Python\Python39\lib\site-packages\pytorch_lightning\core\lightning.py", line 1646, in optimizer_step
optimizer.step(closure=optimizer_closure)
File "C:\Users\B\AppData\Local\Programs\Python\Python39\lib\site-packages\pytorch_lightning\core\optimizer.py", line 168, in step
step_output = self._strategy.optimizer_step(self._optimizer, self._optimizer_idx, closure, **kwargs)
File "C:\Users\B\AppData\Local\Programs\Python\Python39\lib\site-packages\pytorch_lightning\strategies\strategy.py", line 193, in optimizer_step
return self.precision_plugin.optimizer_step(model, optimizer, opt_idx, closure, **kwargs)
File "C:\Users\B\AppData\Local\Programs\Python\Python39\lib\site-packages\pytorch_lightning\plugins\precision\native_amp.py", line 85, in optimizer_step
closure_result = closure()
File "C:\Users\B\AppData\Local\Programs\Python\Python39\lib\site-packages\pytorch_lightning\loops\optimization\optimizer_loop.py", line 148, in __call__
self._result = self.closure(*args, **kwargs)
File "C:\Users\B\AppData\Local\Programs\Python\Python39\lib\site-packages\pytorch_lightning\loops\optimization\optimizer_loop.py", line 134, in closure
step_output = self._step_fn()
File "C:\Users\B\AppData\Local\Programs\Python\Python39\lib\site-packages\pytorch_lightning\loops\optimization\optimizer_loop.py", line 427, in _training_step
training_step_output = self.trainer._call_strategy_hook("training_step", *step_kwargs.values())
File "C:\Users\B\AppData\Local\Programs\Python\Python39\lib\site-packages\pytorch_lightning\trainer\trainer.py", line 1765, in _call_strategy_hook
output = fn(*args, **kwargs)
File "C:\Users\B\AppData\Local\Programs\Python\Python39\lib\site-packages\pytorch_lightning\strategies\dp.py", line 125, in training_step
return self.model(*args, **kwargs)
File "C:\Users\B\AppData\Local\Programs\Python\Python39\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "C:\Users\B\AppData\Local\Programs\Python\Python39\lib\site-packages\torch\nn\parallel\data_parallel.py", line 169, in forward
return self.module(*inputs[0], **kwargs[0])
File "C:\Users\B\AppData\Local\Programs\Python\Python39\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "C:\Users\B\AppData\Local\Programs\Python\Python39\lib\site-packages\pytorch_lightning\overrides\data_parallel.py", line 64, in forward
output = super().forward(*inputs, **kwargs)
File "C:\Users\B\AppData\Local\Programs\Python\Python39\lib\site-packages\pytorch_lightning\overrides\base.py", line 82, in forward
output = self.module.training_step(*inputs, **kwargs)
File "D:\NERF\BakedSDF\torch-bakedsdf-main\torch-bakedsdf-main\systems\neus.py", line 95, in training_step
train_num_rays = int(self.train_num_rays * (self.train_num_samples / out['num_samples_full'].sum().item()))
ZeroDivisionError: division by zero
Epoch 0: : 0it [02:25, ?it/s]
[W C:\actions-runner\_work\pytorch\pytorch\builder\windows\pytorch\torch\csrc\CudaIPCTypes.cpp:15] Producer process has been terminated before all shared CUDA tensors released. See Note [Sharing CUDA tensors]
What might be causing this?
Thank you!
The text was updated successfully, but these errors were encountered:
A similar problem has been resolved in another repository;
it appears to be a compatibility issue between Windows and pytorh_lighting.
Can you solve the problem in a similar way to this one? xxlong0/Wonder3D#22
・remove all ".to(self.rank)" and "device=self.dataset.all_images.device"
・ add ".to(self.device)" to the data that need to send to gpu.
Hi, and thank you for making this code available.
I am trying to run on the mip360 garden dataset, and when I run:
python launch.py --config configs/neus-colmap.yaml --gpu 0 --train dataset.root_dir=D://NERF//BakedSDF//torch-bakedsdf-main//torch-bakedsdf-main//load//unbounded360//garden//
I see this error:
What might be causing this?
Thank you!
The text was updated successfully, but these errors were encountered: