|
29 | 29 | from ..utils import TRANSFORMERS_MINIMUM_VERSION as GLOBAL_MIN_TRANSFORMERS_VERSION
|
30 | 30 | from ..utils.doc import add_dynamic_docstring
|
31 | 31 | from ..utils.import_utils import is_torch_version, is_transformers_version
|
32 |
| -from .model_patcher import ModelPatcher |
33 | 32 |
|
34 | 33 |
|
35 | 34 | if TYPE_CHECKING:
|
36 |
| - from transformers import PretrainedConfig, PreTrainedModel, TFPreTrainedModel |
| 35 | + from transformers import PretrainedConfig |
37 | 36 |
|
38 | 37 | logger = logging.get_logger(__name__)
|
39 | 38 |
|
@@ -133,7 +132,8 @@ class ExportConfig(ABC):
|
133 | 132 | "zero-shot-image-classification": ["logits_per_image", "logits_per_text", "text_embeds", "image_embeds"],
|
134 | 133 | "zero-shot-object-detection": ["logits", "pred_boxes", "text_embeds", "image_embeds"],
|
135 | 134 | }
|
136 |
| - _MODEL_PATCHER = ModelPatcher |
| 135 | + # TODO : add _MODEL_PATCHER + patch_model_for_export |
| 136 | + # _MODEL_PATCHER = ModelPatcher |
137 | 137 |
|
138 | 138 | def __init__(
|
139 | 139 | self,
|
@@ -249,8 +249,3 @@ def flatten_inputs(cls, inputs: Dict[str, Any]) -> Dict[str, Any]:
|
249 | 249 | else:
|
250 | 250 | flatten[name] = value
|
251 | 251 | return flatten
|
252 |
| - |
253 |
| - def patch_model_for_export( |
254 |
| - self, model: Union["PreTrainedModel", "TFPreTrainedModel"], model_kwargs: Optional[Dict[str, Any]] = None |
255 |
| - ) -> "ModelPatcher": |
256 |
| - return self._MODEL_PATCHER(self, model, model_kwargs=model_kwargs) |
0 commit comments