Skip to content

Commit 94a990f

Browse files
committed
fix test expected int8
1 parent 450a63b commit 94a990f

File tree

3 files changed

+19
-19
lines changed

3 files changed

+19
-19
lines changed

tests/openvino/test_quantization.py

+10-10
Original file line numberDiff line numberDiff line change
@@ -154,24 +154,24 @@ class OVWeightCompressionTest(unittest.TestCase):
154154
# TODO : add models
155155
SUPPORTED_ARCHITECTURES_WITH_EXPECTED_8BIT_COMPRESSED_MATMULS = (
156156
(OVModelForSequenceClassification, "hf-internal-testing/tiny-random-bert", 70, 70),
157-
(OVModelForCausalLM, "hf-internal-testing/tiny-random-gpt2", 44, 46),
157+
(OVModelForCausalLM, "hf-internal-testing/tiny-random-gpt2", 44, 44),
158158
)
159159

160-
SUPPORTED_ARCHITECTURES_WITH_EXPECTED_4BIT_COMPRESSED_MATMULS = ((OVModelForCausalLM, "opt125m", 64, 365),)
161-
SUPPORTED_ARCHITECTURES_WITH_EXPECTED_4BIT_AUTOCOMPRESSED_MATMULS = ((OVModelForCausalLM, "opt125m", 0, 388),)
160+
SUPPORTED_ARCHITECTURES_WITH_EXPECTED_4BIT_COMPRESSED_MATMULS = ((OVModelForCausalLM, "opt125m", 62, 365),)
161+
SUPPORTED_ARCHITECTURES_WITH_EXPECTED_4BIT_AUTOCOMPRESSED_MATMULS = ((OVModelForCausalLM, "opt125m", 0, 385),)
162162
SUPPORTED_ARCHITECTURES_WITH_EXPECTED_4BIT_AUTO_COMPRESSED_MATMULS = (
163-
(OVModelForCausalLM, "hf-internal-testing/tiny-random-OPTForCausalLM", 16, 136),
163+
(OVModelForCausalLM, "hf-internal-testing/tiny-random-OPTForCausalLM", 14, 136),
164164
)
165165
SUPPORTED_ARCHITECTURES_STATEFUL_WITH_EXPECTED_8BIT_COMPRESSED_MATMULS = (
166-
(OVModelForCausalLM, "hf-internal-testing/tiny-random-gpt2", 44, 46),
166+
(OVModelForCausalLM, "hf-internal-testing/tiny-random-gpt2", 44, 44),
167167
)
168168

169169
LOAD_IN_4_BITS_SCOPE = (
170170
(
171171
OVModelForCausalLM,
172172
"hf-internal-testing/tiny-random-gpt2",
173173
dict(bits=4, sym=False, group_size=-1, ratio=0.8),
174-
16,
174+
14,
175175
),
176176
(
177177
OVModelForCausalLM,
@@ -182,13 +182,13 @@ class OVWeightCompressionTest(unittest.TestCase):
182182
group_size=32,
183183
ignored_scope={"names": ["__module.model.transformer.h.2.mlp.c_fc/aten::addmm/MatMul"]},
184184
),
185-
6,
185+
4,
186186
),
187187
(
188188
OVModelForCausalLM,
189189
"hf-internal-testing/tiny-random-gpt2",
190190
dict(bits=4, sym=False, group_size=-1, ratio=0.8, all_layers=True),
191-
22,
191+
18,
192192
),
193193
(
194194
OVModelForCausalLM,
@@ -201,7 +201,7 @@ class OVWeightCompressionTest(unittest.TestCase):
201201
sensitivity_metric="mean_activation_magnitude",
202202
dataset="ptb",
203203
),
204-
16,
204+
14,
205205
),
206206
(
207207
OVModelForCausalLM,
@@ -215,7 +215,7 @@ class OVWeightCompressionTest(unittest.TestCase):
215215
dataset="ptb",
216216
awq=True,
217217
),
218-
16,
218+
14,
219219
),
220220
)
221221

tests/openvino/test_training.py

+6-6
Original file line numberDiff line numberDiff line change
@@ -365,7 +365,7 @@ def tearDown(self):
365365
"default_quantization,structured_movement_sparsity": OVTrainerTestDescriptor(
366366
model_id="hf-internal-testing/tiny-random-bert",
367367
nncf_compression_config=[DEFAULT_QUANTIZATION_CONFIG, STRUCTURED_MOVEMENT_SPARSITY_CONFIG_FOR_BERT],
368-
expected_fake_quantize=44,
368+
expected_fake_quantize=34,
369369
expected_int8=32,
370370
expected_binary_masks=60,
371371
compression_metrics=["compression_loss"],
@@ -376,7 +376,7 @@ def tearDown(self):
376376
CUSTOMIZED_QUANTIZATION_CONFIG,
377377
STRUCTURED_MOVEMENT_SPARSITY_CONFIG_FOR_BERT,
378378
],
379-
expected_fake_quantize=44,
379+
expected_fake_quantize=34,
380380
expected_int8=32,
381381
expected_binary_masks=60,
382382
compression_metrics=["compression_loss"],
@@ -385,7 +385,7 @@ def tearDown(self):
385385
model_id="hf-internal-testing/tiny-random-bert",
386386
teacher_model_id="hf-internal-testing/tiny-random-bert",
387387
nncf_compression_config=[DEFAULT_QUANTIZATION_CONFIG, STRUCTURED_MOVEMENT_SPARSITY_CONFIG_FOR_BERT],
388-
expected_fake_quantize=44,
388+
expected_fake_quantize=34,
389389
expected_int8=32,
390390
expected_binary_masks=60,
391391
compression_metrics=["compression_loss", "distillation_loss", "task_loss"],
@@ -397,7 +397,7 @@ def tearDown(self):
397397
CUSTOMIZED_QUANTIZATION_CONFIG,
398398
STRUCTURED_MOVEMENT_SPARSITY_CONFIG_FOR_BERT,
399399
],
400-
expected_fake_quantize=44,
400+
expected_fake_quantize=34,
401401
expected_int8=32,
402402
expected_binary_masks=60,
403403
compression_metrics=["compression_loss", "distillation_loss", "task_loss"],
@@ -574,7 +574,7 @@ def check_ovmodel_reshaping(self, ovmodel: OVModel):
574574
nncf_compression_config=[STRUCTURED_MOVEMENT_SPARSITY_CONFIG_FOR_SWIN, DEFAULT_QUANTIZATION_CONFIG],
575575
expected_fake_quantize=28,
576576
expected_int8=28,
577-
expected_binary_masks=48,
577+
expected_binary_masks=40,
578578
compression_metrics=["compression_loss"],
579579
),
580580
"default_quantization,unstructured_movement_sparsity": OVTrainerTestDescriptor(
@@ -591,7 +591,7 @@ def check_ovmodel_reshaping(self, ovmodel: OVModel):
591591
nncf_compression_config=[STRUCTURED_MOVEMENT_SPARSITY_CONFIG_FOR_SWIN, DEFAULT_QUANTIZATION_CONFIG],
592592
expected_fake_quantize=28,
593593
expected_int8=28,
594-
expected_binary_masks=48,
594+
expected_binary_masks=40,
595595
compression_metrics=["compression_loss", "distillation_loss", "task_loss"],
596596
),
597597
"distillation,default_quantization,unstructured_movement_sparsity": OVTrainerTestDescriptor(

tests/openvino/utils_tests.py

+3-3
Original file line numberDiff line numberDiff line change
@@ -102,12 +102,12 @@
102102
SEED = 42
103103

104104
_ARCHITECTURES_TO_EXPECTED_INT8 = {
105-
"bert": (70,),
105+
"bert": (68,),
106106
"roberta": (68,),
107107
"albert": (84,),
108108
"vit": (64,),
109109
"blenderbot": (70,),
110-
"gpt2": (46,),
110+
"gpt2": (44,),
111111
"wav2vec2": (34,),
112112
"distilbert": (66,),
113113
"t5": (64, 104, 84),
@@ -116,7 +116,7 @@
116116
"stable-diffusion-xl-refiner": (366, 34, 42, 66),
117117
}
118118

119-
_ARCHITECTURES_TO_EXPECTED_INT4_INT8 = {"opt125m": (64, 477)}
119+
_ARCHITECTURES_TO_EXPECTED_INT4_INT8 = {"opt125m": (62, 477)}
120120

121121

122122
def get_num_quantized_nodes(ov_model):

0 commit comments

Comments
 (0)