|
76 | 76 | }
|
77 | 77 | ],
|
78 | 78 | "source": [
|
79 |
| - "from optimum.intel.openvino import OVModelForQuestionAnswering\n", |
| 79 | + "from optimum.intel import OVModelForQuestionAnswering\n", |
80 | 80 | "\n",
|
81 | 81 | "# Load PyTorch model from the Hub and export to OpenVINO in the background\n",
|
82 | 82 | "model = OVModelForQuestionAnswering.from_pretrained(\"distilbert-base-uncased-distilled-squad\", export=True)\n",
|
|
182 | 182 | }
|
183 | 183 | ],
|
184 | 184 | "source": [
|
185 |
| - "from optimum.intel.openvino import OVModelForQuestionAnswering\n", |
| 185 | + "from optimum.intel import OVModelForQuestionAnswering\n", |
186 | 186 | "from transformers import AutoTokenizer, pipeline\n",
|
187 | 187 | "\n",
|
188 | 188 | "model = OVModelForQuestionAnswering.from_pretrained(\"distilbert-base-uncased-distilled-squad-ov-fp32\")\n",
|
|
240 | 240 | ],
|
241 | 241 | "source": [
|
242 | 242 | "import torch\n",
|
243 |
| - "from optimum.intel.openvino import OVModelForQuestionAnswering\n", |
| 243 | + "from optimum.intel import OVModelForQuestionAnswering\n", |
244 | 244 | "from transformers import AutoTokenizer, pipeline\n",
|
245 | 245 | "\n",
|
246 | 246 | "model = OVModelForQuestionAnswering.from_pretrained(\"distilbert-base-uncased-distilled-squad-ov-fp32\")\n",
|
|
324 | 324 | }
|
325 | 325 | ],
|
326 | 326 | "source": [
|
327 |
| - "from optimum.intel.openvino import OVModelForQuestionAnswering\n", |
| 327 | + "from optimum.intel import OVModelForQuestionAnswering\n", |
328 | 328 | "from transformers import AutoTokenizer, pipeline\n",
|
329 | 329 | "\n",
|
330 | 330 | "model = OVModelForQuestionAnswering.from_pretrained(\n",
|
|
529 | 529 | ],
|
530 | 530 | "source": [
|
531 | 531 | "from IPython.display import Audio\n",
|
532 |
| - "from optimum.intel.openvino import OVModelForAudioClassification\n", |
| 532 | + "from optimum.intel import OVModelForAudioClassification\n", |
533 | 533 | "from transformers import AutoFeatureExtractor, pipeline\n",
|
534 | 534 | "from datasets import load_dataset\n",
|
535 | 535 | "\n",
|
|
638 | 638 | }
|
639 | 639 | ],
|
640 | 640 | "source": [
|
641 |
| - "from optimum.intel.openvino import OVModelForCausalLM\n", |
| 641 | + "from optimum.intel import OVModelForCausalLM\n", |
642 | 642 | "from transformers import AutoTokenizer, pipeline\n",
|
643 | 643 | "\n",
|
644 | 644 | "model_id = \"helenai/gpt2-ov\"\n",
|
|
704 | 704 | ],
|
705 | 705 | "source": [
|
706 | 706 | "from IPython.display import Image\n",
|
707 |
| - "from optimum.intel.openvino import OVModelForImageClassification\n", |
| 707 | + "from optimum.intel import OVModelForImageClassification\n", |
708 | 708 | "from transformers import AutoImageProcessor, pipeline\n",
|
709 | 709 | "\n",
|
710 | 710 | "model_id = \"helenai/microsoft-swin-tiny-patch4-window7-224-ov\"\n",
|
|
766 | 766 | }
|
767 | 767 | ],
|
768 | 768 | "source": [
|
769 |
| - "from optimum.intel.openvino import OVModelForMaskedLM\n", |
| 769 | + "from optimum.intel import OVModelForMaskedLM\n", |
770 | 770 | "from transformers import AutoTokenizer, pipeline\n",
|
771 | 771 | "\n",
|
772 | 772 | "model_id = \"helenai/bert-base-uncased-ov\"\n",
|
|
835 | 835 | }
|
836 | 836 | ],
|
837 | 837 | "source": [
|
838 |
| - "from optimum.intel.openvino import OVModelForQuestionAnswering\n", |
| 838 | + "from optimum.intel import OVModelForQuestionAnswering\n", |
839 | 839 | "from transformers import AutoTokenizer, pipeline\n",
|
840 | 840 | "\n",
|
841 | 841 | "# Load the model and tokenizer saved in Part 1 of this notebook. Or use the line below to load them from the hub\n",
|
|
890 | 890 | }
|
891 | 891 | ],
|
892 | 892 | "source": [
|
893 |
| - "from optimum.intel.openvino import OVModelForSeq2SeqLM\n", |
| 893 | + "from optimum.intel import OVModelForSeq2SeqLM\n", |
894 | 894 | "from transformers import AutoTokenizer, pipeline\n",
|
895 | 895 | "\n",
|
896 | 896 | "model_id = \"helenai/t5-small-ov\"\n",
|
|
998 | 998 | }
|
999 | 999 | ],
|
1000 | 1000 | "source": [
|
1001 |
| - "from optimum.intel.openvino import OVModelForSequenceClassification\n", |
| 1001 | + "from optimum.intel import OVModelForSequenceClassification\n", |
1002 | 1002 | "from transformers import AutoTokenizer, pipeline\n",
|
1003 | 1003 | "\n",
|
1004 | 1004 | "model_id = \"helenai/papluca-xlm-roberta-base-language-detection-ov\"\n",
|
|
1047 | 1047 | }
|
1048 | 1048 | ],
|
1049 | 1049 | "source": [
|
1050 |
| - "from optimum.intel.openvino import OVModelForTokenClassification\n", |
| 1050 | + "from optimum.intel import OVModelForTokenClassification\n", |
1051 | 1051 | "from transformers import AutoTokenizer, pipeline\n",
|
1052 | 1052 | "\n",
|
1053 | 1053 | "model_id = \"helenai/dslim-bert-base-NER-ov-fp32\"\n",
|
|
0 commit comments