|
| 1 | +# Copyright 2024 The HuggingFace Team. All rights reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +import math |
| 16 | +from typing import List, Optional, Tuple, Union |
| 17 | + |
| 18 | +import torch |
| 19 | +from torch import nn |
| 20 | +from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask |
| 21 | +from transformers.modeling_outputs import BaseModelOutputWithPast |
| 22 | +from transformers.models.llama.modeling_llama import repeat_kv |
| 23 | + |
| 24 | +from optimum.intel.utils.import_utils import is_ipex_version |
| 25 | + |
| 26 | + |
| 27 | +# Adapted from https://github.com/huggingface/transformers/blob/v4.38.2/src/transformers/models/llama/modeling_llama.py#L83 |
| 28 | +def _llama_layer_norm_forward(self, hidden_states): |
| 29 | + return torch.ops.torch_ipex.rmsnorm(hidden_states, self.weight, self.variance_epsilon) |
| 30 | + |
| 31 | + |
| 32 | +# Adapted from https://github.com/huggingface/transformers/blob/v4.38.2/src/transformers/models/llama/modeling_llama.py#L321 |
| 33 | +def _llama_attn_forward( |
| 34 | + self, |
| 35 | + hidden_states: torch.Tensor, |
| 36 | + attention_mask: Optional[torch.Tensor] = None, |
| 37 | + position_ids: Optional[torch.LongTensor] = None, |
| 38 | + past_key_value: Optional[Tuple[torch.Tensor]] = None, |
| 39 | + output_attentions: bool = False, |
| 40 | + use_cache: bool = False, |
| 41 | + **kwargs, |
| 42 | +) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
| 43 | + bsz, q_len, _ = hidden_states.size() |
| 44 | + |
| 45 | + query = self.q_proj(hidden_states) |
| 46 | + key = self.k_proj(hidden_states) |
| 47 | + value = self.v_proj(hidden_states) |
| 48 | + |
| 49 | + kv_seq_len = q_len + past_key_value[0].size(-2) if past_key_value is not None else q_len |
| 50 | + |
| 51 | + query = query.view(bsz, q_len, self.num_heads, self.head_dim) |
| 52 | + key = key.view(bsz, q_len, self.num_key_value_heads, self.head_dim) |
| 53 | + value = value.view(bsz, q_len, self.num_key_value_heads, self.head_dim) |
| 54 | + # Use ipex op to rotary position embedding more efficient. |
| 55 | + key = self.ipex_rope( |
| 56 | + key, |
| 57 | + position_ids, |
| 58 | + self.num_key_value_heads, |
| 59 | + self.head_dim, |
| 60 | + self.head_dim // 2, |
| 61 | + self.head_dim, |
| 62 | + kv_seq_len, |
| 63 | + ) |
| 64 | + query = self.ipex_rope( |
| 65 | + query, |
| 66 | + position_ids, |
| 67 | + self.num_heads, |
| 68 | + self.head_dim, |
| 69 | + self.head_dim // 2, |
| 70 | + self.head_dim, |
| 71 | + kv_seq_len, |
| 72 | + ) |
| 73 | + |
| 74 | + if use_cache: |
| 75 | + # This ipex op pre-allocates buffers for past_key_values and use beam index history |
| 76 | + # which to decide which beam should be used to make attention scale dot more efficient. |
| 77 | + (attn_output, attn_weights, past_key_value) = self.ipex_scale_dot_product( |
| 78 | + query, |
| 79 | + key, |
| 80 | + value, |
| 81 | + math.sqrt(self.head_dim), |
| 82 | + past_key_value, |
| 83 | + None, |
| 84 | + attention_mask, |
| 85 | + ) |
| 86 | + else: |
| 87 | + value_states = value.transpose(1, 2) |
| 88 | + query_states = query.transpose(1, 2) |
| 89 | + key_states = key.transpose(1, 2) |
| 90 | + kv_seq_len = key_states.shape[-2] |
| 91 | + |
| 92 | + past_key_value = None |
| 93 | + # repeat k/v heads if n_kv_heads < n_heads |
| 94 | + key_states = repeat_kv(key_states, self.num_key_value_groups) |
| 95 | + value_states = repeat_kv(value_states, self.num_key_value_groups) |
| 96 | + |
| 97 | + attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) |
| 98 | + |
| 99 | + if attention_mask is not None: |
| 100 | + attn_weights = torch.tensor(attn_weights) + torch.tensor(attention_mask) |
| 101 | + attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)) |
| 102 | + |
| 103 | + # upcast attention to fp32 |
| 104 | + attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) |
| 105 | + attn_output = torch.matmul(attn_weights, value_states) |
| 106 | + |
| 107 | + attn_output = attn_output.transpose(1, 2) |
| 108 | + attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) |
| 109 | + |
| 110 | + if not output_attentions: |
| 111 | + attn_weights = None |
| 112 | + |
| 113 | + return attn_output, attn_weights, past_key_value |
| 114 | + |
| 115 | + |
| 116 | +# Adapted from https://github.com/huggingface/transformers/blob/v4.38.2/src/transformers/models/llama/modeling_llama.py#L1130 |
| 117 | +def _llama_model_forward( |
| 118 | + self, |
| 119 | + input_ids: torch.LongTensor = None, |
| 120 | + attention_mask: Optional[torch.Tensor] = None, |
| 121 | + position_ids: Optional[torch.LongTensor] = None, |
| 122 | + past_key_values: Optional[List[torch.FloatTensor]] = None, |
| 123 | + inputs_embeds: Optional[torch.FloatTensor] = None, |
| 124 | + use_cache: Optional[bool] = None, |
| 125 | + output_attentions: Optional[bool] = None, |
| 126 | + output_hidden_states: Optional[bool] = None, |
| 127 | + return_dict: Optional[bool] = None, |
| 128 | + **kwargs, |
| 129 | +) -> Union[Tuple, BaseModelOutputWithPast]: |
| 130 | + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
| 131 | + output_hidden_states = ( |
| 132 | + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
| 133 | + ) |
| 134 | + use_cache = use_cache if use_cache is not None else self.config.use_cache |
| 135 | + |
| 136 | + return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
| 137 | + |
| 138 | + # retrieve input_ids and inputs_embeds |
| 139 | + if input_ids is not None and inputs_embeds is not None: |
| 140 | + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
| 141 | + elif input_ids is not None: |
| 142 | + batch_size, seq_length = input_ids.shape[:2] |
| 143 | + elif inputs_embeds is not None: |
| 144 | + batch_size, seq_length = inputs_embeds.shape[:2] |
| 145 | + else: |
| 146 | + raise ValueError("You have to specify either input_ids or inputs_embeds") |
| 147 | + |
| 148 | + past_key_values_length = 0 |
| 149 | + if past_key_values is not None: |
| 150 | + past_key_values_length = past_key_values[0][0].shape[2] |
| 151 | + |
| 152 | + if position_ids is None: |
| 153 | + device = input_ids.device if input_ids is not None else inputs_embeds.device |
| 154 | + position_ids = torch.arange( |
| 155 | + past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device |
| 156 | + ) |
| 157 | + position_ids = position_ids.unsqueeze(0) |
| 158 | + |
| 159 | + if inputs_embeds is None: |
| 160 | + inputs_embeds = self.embed_tokens(input_ids) |
| 161 | + |
| 162 | + if getattr(self.config, "_flash_attn_2_enabled", False): |
| 163 | + # 2d mask is passed through the layers |
| 164 | + attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None |
| 165 | + else: |
| 166 | + # 4d mask is passed through the layers |
| 167 | + attention_mask = _prepare_4d_causal_attention_mask( |
| 168 | + attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length |
| 169 | + ) |
| 170 | + |
| 171 | + # embed positions |
| 172 | + hidden_states = inputs_embeds |
| 173 | + |
| 174 | + # decoder layers |
| 175 | + all_hidden_states = () if output_hidden_states else None |
| 176 | + all_self_attns = () if output_attentions else None |
| 177 | + next_decoder_cache = () if use_cache else None |
| 178 | + |
| 179 | + for idx, decoder_layer in enumerate(self.layers): |
| 180 | + if output_hidden_states: |
| 181 | + all_hidden_states += (hidden_states,) |
| 182 | + |
| 183 | + past_key_value = past_key_values[idx] if past_key_values is not None else None |
| 184 | + |
| 185 | + layer_outputs = decoder_layer( |
| 186 | + hidden_states, |
| 187 | + attention_mask=attention_mask, |
| 188 | + position_ids=position_ids, |
| 189 | + past_key_value=past_key_value, |
| 190 | + output_attentions=output_attentions, |
| 191 | + use_cache=use_cache, |
| 192 | + ) |
| 193 | + |
| 194 | + hidden_states = layer_outputs[0] |
| 195 | + |
| 196 | + if use_cache: |
| 197 | + next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) |
| 198 | + |
| 199 | + if output_attentions: |
| 200 | + all_self_attns += (layer_outputs[1],) |
| 201 | + |
| 202 | + hidden_states = self.norm(hidden_states) |
| 203 | + |
| 204 | + # add hidden states from the last decoder layer |
| 205 | + if output_hidden_states: |
| 206 | + all_hidden_states += (hidden_states,) |
| 207 | + |
| 208 | + next_cache = next_decoder_cache if use_cache else None |
| 209 | + if not return_dict: |
| 210 | + return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
| 211 | + return BaseModelOutputWithPast( |
| 212 | + last_hidden_state=hidden_states, |
| 213 | + past_key_values=next_cache, |
| 214 | + hidden_states=all_hidden_states, |
| 215 | + attentions=all_self_attns, |
| 216 | + ) |
| 217 | + |
| 218 | + |
| 219 | +# Adapted from https://github.com/huggingface/transformers/blob/v4.38.2/src/transformers/models/llama/modeling_llama.py#L694 |
| 220 | +class _IPEXLlamaDecoderLayerRef(nn.Module): |
| 221 | + def __init__(self, module, config, distributed=False): |
| 222 | + if is_ipex_version("<", "2.5.0"): |
| 223 | + raise ImportError("Only ipex version > 2.3.0 supports Linear2SiluMul and LinearAdd") |
| 224 | + |
| 225 | + from intel_extension_for_pytorch.llm.modules import Linear2SiluMul, LinearAdd |
| 226 | + |
| 227 | + super().__init__() |
| 228 | + for k, v in module.__dict__.items(): |
| 229 | + setattr(self, k, v) |
| 230 | + for k, v in module.__class__.__dict__.items(): |
| 231 | + if k.startswith("__") or k.startswith("forward"): |
| 232 | + continue |
| 233 | + setattr(self.__class__, k, getattr(module.__class__, k)) |
| 234 | + self.distributed = distributed |
| 235 | + if not self.distributed: |
| 236 | + self.mha_linear_add = LinearAdd(module.self_attn.o_proj) |
| 237 | + self.mlp_linear_add = LinearAdd(module.mlp.down_proj) |
| 238 | + del self.__dict__["_modules"]["self_attn"].o_proj |
| 239 | + del self.__dict__["_modules"]["mlp"].down_proj |
| 240 | + self.linear_silu_mul = Linear2SiluMul(module.mlp.gate_proj, module.mlp.up_proj) |
| 241 | + del self.__dict__["_modules"]["mlp"].gate_proj |
| 242 | + del self.__dict__["_modules"]["mlp"].up_proj |
| 243 | + |
| 244 | + def forward( |
| 245 | + self, |
| 246 | + hidden_states: torch.Tensor, |
| 247 | + attention_mask: Optional[torch.Tensor] = None, |
| 248 | + position_ids: Optional[torch.LongTensor] = None, |
| 249 | + past_key_value: Optional[Tuple[torch.Tensor]] = None, |
| 250 | + output_attentions: Optional[bool] = False, |
| 251 | + use_cache: Optional[bool] = False, |
| 252 | + **kwargs, |
| 253 | + ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
| 254 | + """ |
| 255 | + Args: |
| 256 | + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
| 257 | + attention_mask (`torch.FloatTensor`, *optional*): |
| 258 | + attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, |
| 259 | + query_sequence_length, key_sequence_length)` if default attention is used. |
| 260 | + output_attentions (`bool`, *optional*): |
| 261 | + Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
| 262 | + returned tensors for more detail. |
| 263 | + use_cache (`bool`, *optional*): |
| 264 | + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
| 265 | + (see `past_key_values`). |
| 266 | + past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states |
| 267 | + """ |
| 268 | + |
| 269 | + residual = hidden_states |
| 270 | + hidden_states = self.input_layernorm(hidden_states) |
| 271 | + |
| 272 | + # Self Attention |
| 273 | + hidden_states, self_attn_weights, present_key_value = self.self_attn( |
| 274 | + hidden_states=hidden_states, |
| 275 | + attention_mask=attention_mask, |
| 276 | + position_ids=position_ids, |
| 277 | + past_key_value=past_key_value, |
| 278 | + output_attentions=output_attentions, |
| 279 | + use_cache=use_cache, |
| 280 | + ) |
| 281 | + if not self.distributed: |
| 282 | + hidden_states = self.mha_linear_add(hidden_states, residual) |
| 283 | + else: |
| 284 | + hidden_states = self.self_attn.o_proj(hidden_states) |
| 285 | + hidden_states = residual + hidden_states |
| 286 | + |
| 287 | + # Fully Connected |
| 288 | + residual = hidden_states |
| 289 | + hidden_states = self.post_attention_layernorm(hidden_states) |
| 290 | + |
| 291 | + mlp_gate = self.linear_silu_mul(hidden_states) |
| 292 | + |
| 293 | + if not self.distributed: |
| 294 | + hidden_states = self.mlp_linear_add(mlp_gate, residual) |
| 295 | + else: |
| 296 | + hidden_states = self.mlp.down_proj(mlp_gate) |
| 297 | + hidden_states = residual + hidden_states |
| 298 | + |
| 299 | + outputs = (hidden_states,) |
| 300 | + |
| 301 | + if output_attentions: |
| 302 | + outputs += (self_attn_weights,) |
| 303 | + |
| 304 | + if use_cache: |
| 305 | + outputs += (present_key_value,) |
| 306 | + |
| 307 | + return outputs |
0 commit comments