-
Notifications
You must be signed in to change notification settings - Fork 127
/
Copy pathtest_quantization.py
870 lines (759 loc) · 40.3 KB
/
test_quantization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ruff: noqa
import itertools
import logging
import tempfile
import unittest
from collections import defaultdict
from enum import Enum
from functools import partial
from typing import List, Union
import evaluate
import numpy as np
import torch
from datasets import load_dataset
from nncf.quantization.advanced_parameters import OverflowFix
from parameterized import parameterized
import openvino.runtime as ov
import nncf
from transformers import (
AutoModelForQuestionAnswering,
AutoModelForSequenceClassification,
AutoModelForCausalLM,
AutoModelForTokenClassification,
AutoTokenizer,
AutoProcessor,
TrainingArguments,
default_data_collator,
)
from transformers.utils.quantization_config import QuantizationMethod
from optimum.intel import (
OVConfig,
OVLatentConsistencyModelPipeline,
OVModelForAudioClassification,
OVModelForCausalLM,
OVModelForFeatureExtraction,
OVModelForImageClassification,
OVModelForMaskedLM,
OVModelForQuestionAnswering,
OVModelForSeq2SeqLM,
OVModelForSequenceClassification,
OVModelForTokenClassification,
OVModelForSpeechSeq2Seq,
OVStableDiffusionPipeline,
OVStableDiffusionXLPipeline,
OVQuantizer,
OVTrainer,
OVQuantizationConfig,
OVWeightQuantizationConfig,
OVDynamicQuantizationConfig,
)
from optimum.intel.openvino.configuration import OVQuantizationMethod, OVQuantizationConfigBase
from optimum.intel.openvino.quantization import InferRequestWrapper
from optimum.intel.utils.import_utils import is_openvino_version
from utils_tests import MODEL_NAMES, get_num_quantized_nodes, _ARCHITECTURES_TO_EXPECTED_INT8
_TASK_TO_DATASET = {
"text-generation": ("wikitext", "wikitext-2-raw-v1", "text"),
"text-classification": ("glue", "sst2", "sentence"),
}
class OVQuantizerTest(unittest.TestCase):
SUPPORTED_ARCHITECTURES_WITH_EXPECTED_QUANTIZED_MATMULS = (
(OVModelForSequenceClassification, "bert", 32, 35),
# (OVModelForCausalLM, "gpt2", 41, 23),
)
@parameterized.expand(SUPPORTED_ARCHITECTURES_WITH_EXPECTED_QUANTIZED_MATMULS)
def test_automodel_static_quantization(self, model_cls, model_name, expected_fake_quantize, expected_int8):
model_id = MODEL_NAMES[model_name]
task = model_cls.export_feature
dataset_name, dataset_config_name, column_name = _TASK_TO_DATASET[task]
file_name = "openvino_quantized_model.xml"
def preprocess_function(examples, tokenizer):
return tokenizer(examples[column_name], padding="max_length", max_length=128, truncation=True)
with tempfile.TemporaryDirectory() as tmp_dir:
transformers_model = model_cls.auto_model_class.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
quantizer = OVQuantizer.from_pretrained(transformers_model, task=task)
calibration_dataset = quantizer.get_calibration_dataset(
dataset_name,
dataset_config_name=dataset_config_name,
preprocess_function=partial(preprocess_function, tokenizer=tokenizer),
num_samples=10,
dataset_split="train",
)
ov_config = OVConfig(quantization_config=OVQuantizationConfig())
quantizer.quantize(
save_directory=tmp_dir,
calibration_dataset=calibration_dataset,
file_name=file_name,
ov_config=ov_config,
)
model = model_cls.from_pretrained(tmp_dir, file_name=file_name)
num_fake_quantize, num_int8, _ = get_num_quantized_nodes(model)
self.assertEqual(expected_fake_quantize, num_fake_quantize)
self.assertEqual(expected_int8, num_int8)
tokens = tokenizer("This is a sample input", return_tensors="pt")
outputs = model(**tokens)
self.assertTrue("logits" in outputs)
# Verify that the configuration is correctly saved and loaded
loaded_config = OVConfig.from_pretrained(tmp_dir)
self.assertEqual(ov_config.quantization_config.to_dict(), loaded_config.quantization_config.to_dict())
@parameterized.expand(SUPPORTED_ARCHITECTURES_WITH_EXPECTED_QUANTIZED_MATMULS)
def test_ovmodel_static_quantization(self, model_cls, model_name, expected_fake_quantize, expected_int8):
model_id = MODEL_NAMES[model_name]
task = model_cls.export_feature
dataset_name, dataset_config_name, column_name = _TASK_TO_DATASET[task]
if "gpt2" in model_id:
expected_int8 -= 1
def preprocess_function(examples, tokenizer):
return tokenizer(examples[column_name], padding="max_length", max_length=128, truncation=True)
with tempfile.TemporaryDirectory() as tmp_dir:
transformers_model = model_cls.from_pretrained(model_id, export=True)
tokenizer = AutoTokenizer.from_pretrained(model_id)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
quantizer = OVQuantizer.from_pretrained(transformers_model, task=task)
calibration_dataset = quantizer.get_calibration_dataset(
dataset_name,
dataset_config_name=dataset_config_name,
preprocess_function=partial(preprocess_function, tokenizer=tokenizer),
num_samples=10,
dataset_split="train",
)
ov_config = OVConfig(quantization_config=OVQuantizationConfig())
quantizer.quantize(save_directory=tmp_dir, calibration_dataset=calibration_dataset, ov_config=ov_config)
model = model_cls.from_pretrained(tmp_dir)
num_fake_quantize, num_int8, _ = get_num_quantized_nodes(model)
self.assertEqual(expected_fake_quantize, num_fake_quantize)
self.assertEqual(expected_int8, num_int8)
tokens = tokenizer("This is a sample input", return_tensors="pt")
outputs = model(**tokens)
self.assertTrue("logits" in outputs)
# Verify that the configuration is correctly saved and loaded
loaded_config = OVConfig.from_pretrained(tmp_dir)
self.assertEqual(ov_config.quantization_config.to_dict(), loaded_config.quantization_config.to_dict())
class OVWeightCompressionTest(unittest.TestCase):
# TODO : add models
SUPPORTED_ARCHITECTURES_WITH_EXPECTED_8BIT_COMPRESSED_MATMULS = (
(OVModelForSequenceClassification, "bert", 70, 70),
(OVModelForCausalLM, "gpt2", 44, 44),
)
SUPPORTED_ARCHITECTURES_WITH_EXPECTED_4BIT_COMPRESSED_MATMULS = ((OVModelForCausalLM, "opt125m", 62, 86),)
SUPPORTED_ARCHITECTURES_WITH_EXPECTED_4BIT_AUTOCOMPRESSED_MATMULS = ((OVModelForCausalLM, "opt125m", 0, 148),)
SUPPORTED_ARCHITECTURES_STATEFUL_WITH_EXPECTED_8BIT_COMPRESSED_MATMULS = ((OVModelForCausalLM, "gpt2", 44, 44),)
LOAD_IN_4_BITS_SCOPE = (
(
OVModelForCausalLM,
"gpt2",
dict(bits=4, sym=False, group_size=-1, ratio=0.8),
14,
),
(
OVModelForCausalLM,
"gpt2",
dict(
bits=4,
sym=False,
group_size=32,
ignored_scope={"names": ["__module.model.transformer.h.2.mlp.c_fc/aten::addmm/MatMul"]},
),
4,
),
(
OVModelForCausalLM,
"gpt2",
dict(bits=4, sym=False, group_size=-1, ratio=0.8, all_layers=True),
18,
),
(
OVModelForCausalLM,
"opt",
dict(
bits=4,
sym=True,
group_size=-1,
ratio=0.8,
sensitivity_metric="mean_activation_magnitude",
dataset="ptb",
),
14,
),
(
OVModelForCausalLM,
"opt",
dict(
bits=4,
sym=True,
group_size=-1,
ratio=0.8,
sensitivity_metric="mean_activation_magnitude",
dataset="ptb",
quant_method=QuantizationMethod.AWQ,
),
14,
),
)
SUPPORTED_ARCHITECTURES_WITH_AUTO_COMPRESSION = (
(OVModelForCausalLM, "gpt2"),
(OVModelForMaskedLM, "bert"),
(OVModelForTokenClassification, "roberta"),
(OVModelForImageClassification, "vit"),
(OVModelForSeq2SeqLM, "t5"),
(OVModelForSequenceClassification, "albert"),
(OVModelForQuestionAnswering, "distilbert"),
(OVModelForAudioClassification, "wav2vec2"),
(OVModelForFeatureExtraction, "blenderbot"),
(OVStableDiffusionPipeline, "stable-diffusion"),
(OVStableDiffusionXLPipeline, "stable-diffusion-xl"),
)
SUPPORTED_ARCHITECTURES_WITH_HYBRID_QUANTIZATION = (
(OVStableDiffusionPipeline, "stable-diffusion", 72, 195),
(OVStableDiffusionXLPipeline, "stable-diffusion-xl", 84, 331),
(OVLatentConsistencyModelPipeline, "latent-consistency", 50, 135),
)
IS_SUPPORT_STATEFUL = is_openvino_version(">=", "2023.3")
DEFAULT_INT4_CONFIG = {"bits": 4, "sym": True, "group_size": 64, "all_layers": True}
@parameterized.expand(SUPPORTED_ARCHITECTURES_WITH_EXPECTED_8BIT_COMPRESSED_MATMULS)
def test_automodel_weight_compression(self, model_cls, model_name, expected_pt_int8, expected_ov_int8):
task = model_cls.export_feature
model_id = MODEL_NAMES[model_name]
with tempfile.TemporaryDirectory() as tmp_dir:
transformers_model = model_cls.auto_model_class.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
quantizer = OVQuantizer.from_pretrained(transformers_model, task=task)
quantizer.quantize(save_directory=tmp_dir)
model = model_cls.from_pretrained(tmp_dir)
_, num_int8, _ = get_num_quantized_nodes(model)
self.assertEqual(expected_pt_int8, num_int8)
tokens = tokenizer("This is a sample input", return_tensors="pt")
outputs = model(**tokens)
self.assertTrue("logits" in outputs)
# Verify that the configuration is correctly saved and loaded
loaded_config = OVConfig.from_pretrained(tmp_dir)
original_config_as_dict = OVWeightQuantizationConfig().to_dict()
for k in original_config_as_dict.keys():
v = original_config_as_dict[k]
if isinstance(v, Enum):
original_config_as_dict[k] = v.value
self.assertEqual(original_config_as_dict, loaded_config.quantization_config.to_dict())
@parameterized.expand(SUPPORTED_ARCHITECTURES_WITH_EXPECTED_8BIT_COMPRESSED_MATMULS)
def test_ovmodel_8bit_weight_compression(self, model_cls, model_name, expected_pt_int8, expected_ov_int8):
task = model_cls.export_feature
model_id = MODEL_NAMES[model_name]
with tempfile.TemporaryDirectory() as tmp_dir:
transformers_model = model_cls.from_pretrained(model_id, export=True)
tokenizer = AutoTokenizer.from_pretrained(model_id)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
quantizer = OVQuantizer.from_pretrained(transformers_model, task=task)
quantizer.quantize(save_directory=tmp_dir)
model = model_cls.from_pretrained(tmp_dir)
_, num_int8, _ = get_num_quantized_nodes(model)
self.assertEqual(expected_ov_int8, num_int8)
tokens = tokenizer("This is a sample input", return_tensors="pt")
outputs = model(**tokens)
self.assertTrue("logits" in outputs)
# Verify that the configuration is correctly saved and loaded
loaded_config = OVConfig.from_pretrained(tmp_dir)
self.assertEqual(OVWeightQuantizationConfig().to_dict(), loaded_config.quantization_config.to_dict())
@parameterized.expand(SUPPORTED_ARCHITECTURES_WITH_EXPECTED_4BIT_COMPRESSED_MATMULS)
def test_ovmodel_4bit_weight_compression(self, model_cls, model_name, expected_int8, expected_int4):
task = model_cls.export_feature
model_id = MODEL_NAMES[model_name]
with tempfile.TemporaryDirectory() as tmp_dir:
transformers_model = model_cls.from_pretrained(model_id, export=True, stateful=False)
tokenizer = AutoTokenizer.from_pretrained(model_id)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
quantizer = OVQuantizer.from_pretrained(transformers_model, task=task)
ov_config = OVConfig(quantization_config=OVWeightQuantizationConfig(bits=4, sym=True, ratio=0.8))
quantizer.quantize(save_directory=tmp_dir, ov_config=ov_config)
model = model_cls.from_pretrained(tmp_dir)
_, num_int8, num_int4 = get_num_quantized_nodes(model)
self.assertEqual(expected_int8, num_int8)
self.assertEqual(expected_int4, num_int4)
tokens = tokenizer("This is a sample input", return_tensors="pt")
outputs = model(**tokens)
self.assertTrue("logits" in outputs)
# Verify that the configuration is correctly saved and loaded
loaded_config = OVConfig.from_pretrained(tmp_dir)
self.assertEqual(ov_config.quantization_config.to_dict(), loaded_config.quantization_config.to_dict())
@parameterized.expand(SUPPORTED_ARCHITECTURES_STATEFUL_WITH_EXPECTED_8BIT_COMPRESSED_MATMULS)
@unittest.skipIf(not IS_SUPPORT_STATEFUL, "Stateful models supported only in 2023.3 and above")
def test_ovmodel_8bit_weight_compression_stateful(self, model_cls, model_name, expected_pt_int8, expected_ov_int8):
task = model_cls.export_feature
model_id = MODEL_NAMES[model_name]
with tempfile.TemporaryDirectory() as tmp_dir:
transformers_model = model_cls.from_pretrained(model_id, export=True, stateful=True)
tokenizer = AutoTokenizer.from_pretrained(model_id)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
quantizer = OVQuantizer.from_pretrained(transformers_model, task=task)
quantizer.quantize(save_directory=tmp_dir)
model = model_cls.from_pretrained(tmp_dir)
_, num_int8, _ = get_num_quantized_nodes(model)
self.assertEqual(expected_ov_int8, num_int8)
tokens = tokenizer("This is a sample input", return_tensors="pt")
outputs = model(**tokens)
self.assertTrue("logits" in outputs)
# Verify that the configuration is correctly saved and loaded
loaded_config = OVConfig.from_pretrained(tmp_dir)
self.assertEqual(OVWeightQuantizationConfig().to_dict(), loaded_config.quantization_config.to_dict())
@parameterized.expand(SUPPORTED_ARCHITECTURES_WITH_AUTO_COMPRESSION)
def test_ovmodel_load_with_compressed_weights(self, model_cls, model_type):
model = model_cls.from_pretrained(MODEL_NAMES[model_type], export=True, load_in_8bit=True, stateful=False)
self.assertEqual(model._openvino_config.quantization_config.bits, 8)
self.assertEqual(model._openvino_config.dtype, "int8")
if model.export_feature.startswith("text2text-generation"):
models = [model.encoder, model.decoder, model.decoder_with_past]
elif model.export_feature.startswith("stable-diffusion"):
models = [model.unet, model.vae_encoder, model.vae_decoder]
models.append(model.text_encoder if model.export_feature == "stable-diffusion" else model.text_encoder_2)
else:
models = [model]
expected_ov_int8 = _ARCHITECTURES_TO_EXPECTED_INT8[model_type]
for i, model in enumerate(models):
_, num_int8, _ = get_num_quantized_nodes(model)
self.assertEqual(expected_ov_int8[i], num_int8)
@parameterized.expand(SUPPORTED_ARCHITECTURES_WITH_HYBRID_QUANTIZATION)
def test_ovmodel_hybrid_quantization(self, model_cls, model_type, expected_num_fake_quantize, expected_ov_int8):
model_id = MODEL_NAMES[model_type]
quantization_config = OVWeightQuantizationConfig(bits=8, dataset="conceptual_captions", num_samples=2)
with tempfile.TemporaryDirectory() as tmp_dir:
model = model_cls.from_pretrained(model_id, export=True, quantization_config=quantization_config)
num_fake_quantize, num_int8, num_int4 = get_num_quantized_nodes(model.unet)
self.assertEqual(expected_num_fake_quantize, num_fake_quantize)
self.assertEqual(expected_ov_int8, num_int8)
self.assertEqual(0, num_int4)
model.save_pretrained(tmp_dir)
@parameterized.expand(SUPPORTED_ARCHITECTURES_WITH_HYBRID_QUANTIZATION[-1:])
def test_ovmodel_hybrid_quantization_with_custom_dataset(
self, model_cls, model_type, expected_num_fake_quantize, expected_ov_int8
):
model_id = MODEL_NAMES[model_type]
dataset = [
"dream rose covered with clean crystal, sharp edges, transparent, beautiful, highly detailed, high render"
]
model = model_cls.from_pretrained(
model_id,
export=True,
quantization_config=OVWeightQuantizationConfig(bits=8, dataset=dataset, num_samples=3),
)
num_fake_quantize, num_int8, num_int4 = get_num_quantized_nodes(model.unet)
self.assertEqual(expected_num_fake_quantize, num_fake_quantize)
self.assertEqual(expected_ov_int8, num_int8)
self.assertEqual(0, num_int4)
@parameterized.expand(SUPPORTED_ARCHITECTURES_WITH_EXPECTED_4BIT_AUTOCOMPRESSED_MATMULS)
@unittest.mock.patch.dict(
"optimum.intel.openvino.configuration._DEFAULT_4BIT_CONFIGS", {"facebook/opt-125m": DEFAULT_INT4_CONFIG}
)
def test_ovmodel_4bit_auto_compression(self, model_cls, model_type, expected_ov_int8, expected_ov_int4):
with tempfile.TemporaryDirectory() as tmp_dir:
model_id = MODEL_NAMES[model_type]
model = model_cls.from_pretrained(model_id, export=True, quantization_config={"bits": 4})
tokenizer = AutoTokenizer.from_pretrained(model_id)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
_, num_int8, num_int4 = get_num_quantized_nodes(model)
self.assertEqual(expected_ov_int4, num_int4)
self.assertEqual(expected_ov_int8, num_int8)
model.save_pretrained(tmp_dir)
openvino_config = OVConfig.from_pretrained(tmp_dir)
self.assertEqual(openvino_config.quantization_config.bits, 4)
self.assertEqual(openvino_config.dtype, "int4")
if model_id == "facebook/opt-125m":
for key, value in self.DEFAULT_INT4_CONFIG.items():
self.assertEqual(value, getattr(openvino_config.quantization_config, key))
@parameterized.expand(LOAD_IN_4_BITS_SCOPE)
def test_ovmodel_4bit_auto_compression_with_config(
self, model_cls, model_name, quantization_config, expected_ov_int4
):
model_id = MODEL_NAMES[model_name]
with tempfile.TemporaryDirectory() as tmp_dir:
quantization_config = OVWeightQuantizationConfig.from_dict(quantization_config)
model = model_cls.from_pretrained(model_id, export=True, quantization_config=quantization_config)
tokenizer = AutoTokenizer.from_pretrained(model_id)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
_, num_int4, _ = get_num_quantized_nodes(model)
self.assertEqual(expected_ov_int4, num_int4)
model.save_pretrained(tmp_dir)
openvino_config = OVConfig.from_pretrained(tmp_dir)
self.assertEqual(openvino_config.quantization_config.bits, 4)
self.assertEqual(openvino_config.dtype, "int4")
@parameterized.expand(((OVModelForCausalLM, "gpt2"),))
@unittest.skipIf(not IS_SUPPORT_STATEFUL, "Stateful models supported only in 2023.3 and above")
def test_ovmodel_stateful_load_with_compressed_weights(self, model_cls, model_type):
model = model_cls.from_pretrained(MODEL_NAMES[model_type], export=True, load_in_8bit=True, stateful=True)
self.assertTrue(model.stateful)
self.assertTrue(model.use_cache)
expected_ov_int8 = _ARCHITECTURES_TO_EXPECTED_INT8[model_type][0]
_, num_int8, _ = get_num_quantized_nodes(model)
self.assertEqual(expected_ov_int8, num_int8)
@parameterized.expand(SUPPORTED_ARCHITECTURES_WITH_AUTO_COMPRESSION)
def test_ovmodel_load_with_uncompressed_weights(self, model_cls, model_type):
model = model_cls.from_pretrained(MODEL_NAMES[model_type], export=True, load_in_8bit=False)
if model.export_feature.startswith("text2text-generation"):
models = [model.encoder, model.decoder, model.decoder_with_past]
elif model.export_feature.startswith("stable-diffusion"):
models = [model.unet, model.vae_encoder, model.vae_decoder]
models.append(model.text_encoder if model.export_feature == "stable-diffusion" else model.text_encoder_2)
else:
models = [model]
for i, model in enumerate(models):
_, num_int8, _ = get_num_quantized_nodes(model)
self.assertEqual(0, num_int8)
def test_ovmodel_load_large_model_with_default_compressed_weights(self):
with unittest.mock.patch("torch.nn.Module.parameters") as model_parameters:
mock_tensor = unittest.mock.Mock()
mock_tensor.numel = lambda: 2000000000
mock_tensor.requires_grad = True
model_parameters.return_value = [mock_tensor]
with unittest.mock.patch("openvino.runtime.ie_api.Core.read_model") as core_patch:
with unittest.mock.patch("optimum.exporters.openvino.convert._save_model") as save_model_patch:
_ = OVModelForCausalLM.from_pretrained(
MODEL_NAMES["llama"], export=True, compile=False, use_cache=False
)
save_model_patch.assert_called_with(
unittest.mock.ANY, unittest.mock.ANY, ov_config=OVConfig(quantization_config={"bits": 8})
)
def test_ovmodel_load_large_model_with_uncompressed_weights(self):
with unittest.mock.patch("torch.nn.Module.parameters") as model_parameters:
mock_tensor = unittest.mock.Mock()
mock_tensor.numel = lambda: 2000000000
mock_tensor.requires_grad = True
model_parameters.return_value = [mock_tensor]
with unittest.mock.patch("openvino.runtime.ie_api.Core.read_model") as core_patch:
with unittest.mock.patch("optimum.exporters.openvino.convert._save_model") as save_model_patch:
_ = OVModelForCausalLM.from_pretrained(
MODEL_NAMES["llama"], export=True, load_in_8bit=False, compile=False, use_cache=False
)
save_model_patch.assert_called_with(
unittest.mock.ANY, unittest.mock.ANY, ov_config=OVConfig(dtype="fp32")
)
def test_ovmodel_load_large_model_with_additional_quantization_config(self):
with unittest.mock.patch("torch.nn.Module.parameters") as model_parameters:
mock_tensor = unittest.mock.Mock()
mock_tensor.numel = lambda: 2000000000
mock_tensor.requires_grad = True
with unittest.mock.patch("openvino.runtime.ie_api.Core.read_model") as core_patch:
with unittest.mock.patch("optimum.exporters.openvino.convert._save_model") as save_model_patch:
with unittest.mock.patch("nncf.compress_weights") as compress_weights_patch:
_ = OVModelForCausalLM.from_pretrained(
MODEL_NAMES["llama"],
export=True,
compile=False,
use_cache=False,
quantization_config=OVWeightQuantizationConfig(bits=4, sym=True, group_size=-1, ratio=0.8),
)
# quantization will be performed later, using load_model
save_model_patch.assert_called_with(
unittest.mock.ANY, unittest.mock.ANY, ov_config=OVConfig(dtype="fp32")
)
compression_params = {
"mode": nncf.CompressWeightsMode.INT4_SYM,
"ratio": 0.8,
"group_size": -1,
"all_layers": None,
"sensitivity_metric": None,
"dataset": None,
"ignored_scope": nncf.IgnoredScope(),
}
compress_weights_patch.assert_called_with(unittest.mock.ANY, **compression_params)
@parameterized.expand(LOAD_IN_4_BITS_SCOPE)
def test_ovmodel_4bit_dynamic_with_config(self, model_cls, model_name, quantization_config, expected_ov_int4):
model_id = MODEL_NAMES[model_name]
with tempfile.TemporaryDirectory() as tmp_dir:
group_size = quantization_config.pop("group_size", 32)
quantization_config = OVDynamicQuantizationConfig(
weights_group_size=group_size, activations_group_size=group_size, **quantization_config
)
model = model_cls.from_pretrained(model_id, export=True, quantization_config=quantization_config)
self.assertEqual(model.ov_config["DYNAMIC_QUANTIZATION_GROUP_SIZE"], str(group_size))
self.assertEqual(model.ov_config["KV_CACHE_PRECISION"], "u8")
tokenizer = AutoTokenizer.from_pretrained(model_id)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
_, num_int4, _ = get_num_quantized_nodes(model)
self.assertEqual(expected_ov_int4, num_int4)
model.save_pretrained(tmp_dir)
openvino_config = OVConfig.from_pretrained(tmp_dir)
self.assertEqual(openvino_config.quantization_config.bits, 4)
self.assertEqual(openvino_config.dtype, "int4")
class OVQuantizerQATest(unittest.TestCase):
SUPPORTED_ARCHITECTURES = (("hf-internal-testing/tiny-random-BertForQuestionAnswering",),)
@parameterized.expand(SUPPORTED_ARCHITECTURES)
def test_automodel_static_quantization(self, model_name):
def preprocess_function(examples, tokenizer):
return tokenizer(
examples["question"], examples["context"], padding="max_length", max_length=64, truncation=True
)
with tempfile.TemporaryDirectory() as tmp_dir:
transformers_model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
quantizer = OVQuantizer.from_pretrained(transformers_model)
calibration_dataset = quantizer.get_calibration_dataset(
"squadshifts",
dataset_config_name="new_wiki",
preprocess_function=partial(preprocess_function, tokenizer=tokenizer),
num_samples=10,
dataset_split="test",
)
ov_config = OVConfig(quantization_config=OVQuantizationConfig())
quantizer.quantize(save_directory=tmp_dir, calibration_dataset=calibration_dataset, ov_config=ov_config)
# Test that inference on quantized model works
model = OVModelForQuestionAnswering.from_pretrained(tmp_dir)
tokens = tokenizer.encode_plus(
"This is a sample question", "This is a sample context", add_special_tokens=True, return_tensors="pt"
)
model(**tokens, return_dict=True)
# Test loading model a second time to catch issues with caching
try:
model = OVModelForQuestionAnswering.from_pretrained(tmp_dir)
except RuntimeError:
self.fail("Loading BERT QA model a second time failed")
# Verify that the configuration is correctly saved and loaded
loaded_config = OVConfig.from_pretrained(tmp_dir)
self.assertEqual(ov_config.quantization_config.to_dict(), loaded_config.quantization_config.to_dict())
@parameterized.expand(SUPPORTED_ARCHITECTURES)
def test_ovmodel_static_quantization(self, model_name):
def preprocess_function(examples, tokenizer):
return tokenizer(
examples["question"], examples["context"], padding="max_length", max_length=64, truncation=True
)
with tempfile.TemporaryDirectory() as tmp_dir:
transformers_model = OVModelForQuestionAnswering.from_pretrained(model_name, export=True)
tokenizer = AutoTokenizer.from_pretrained(model_name)
quantizer = OVQuantizer.from_pretrained(transformers_model)
calibration_dataset = quantizer.get_calibration_dataset(
"squadshifts",
dataset_config_name="new_wiki",
preprocess_function=partial(preprocess_function, tokenizer=tokenizer),
num_samples=10,
dataset_split="test",
)
ov_config = OVConfig(quantization_config=OVQuantizationConfig())
quantizer.quantize(save_directory=tmp_dir, calibration_dataset=calibration_dataset, ov_config=ov_config)
# Test that inference on quantized model works
model = OVModelForQuestionAnswering.from_pretrained(tmp_dir)
tokens = tokenizer.encode_plus(
"This is a sample question", "This is a sample context", add_special_tokens=True, return_tensors="pt"
)
model(**tokens, return_dict=True)
# Test loading model a second time to catch issues with caching
try:
model = OVModelForQuestionAnswering.from_pretrained(tmp_dir)
except RuntimeError:
self.fail("Loading BERT QA model a second time failed")
# Verify that the configuration is correctly saved and loaded
loaded_config = OVConfig.from_pretrained(tmp_dir)
self.assertEqual(ov_config.quantization_config.to_dict(), loaded_config.quantization_config.to_dict())
class OVTrainerTest(unittest.TestCase):
SUPPORTED_ARCHITECTURES_WITH_EXPECTED_QUANTIZED_MATMULS = (("distilbert-base-uncased", 49, 38),)
@parameterized.expand(SUPPORTED_ARCHITECTURES_WITH_EXPECTED_QUANTIZED_MATMULS)
def test_aware_training_quantization(self, model_name, expected_fake_quantize, expected_int8):
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
ov_config = OVConfig()
dataset = load_dataset("glue", "sst2")
dataset = dataset.map(
lambda examples: tokenizer(examples["sentence"], padding="max_length", max_length=128), batched=True
)
train_dataset = dataset["train"].select(range(16))
eval_dataset = dataset["validation"].select(range(16))
metric = evaluate.load("glue", "sst2")
def compute_metrics(p):
return metric.compute(predictions=np.argmax(p.predictions, axis=1), references=p.label_ids)
with tempfile.TemporaryDirectory() as tmp_dir:
trainer = OVTrainer(
model=model,
ov_config=ov_config,
task="sequence-classification",
args=TrainingArguments(tmp_dir, num_train_epochs=1.0, do_train=True, do_eval=True),
train_dataset=train_dataset,
eval_dataset=eval_dataset,
compute_metrics=compute_metrics,
tokenizer=tokenizer,
data_collator=default_data_collator,
)
self.assertEqual(trainer.task, "text-classification")
trainer.train()
trainer.evaluate()
trainer.save_model()
model = OVModelForSequenceClassification.from_pretrained(tmp_dir)
num_fake_quantize, num_int8, _ = get_num_quantized_nodes(model)
self.assertEqual(expected_fake_quantize, num_fake_quantize)
self.assertEqual(expected_int8, num_int8)
tokens = tokenizer("This is a sample input", return_tensors="pt")
outputs = model(**tokens)
self.assertTrue("logits" in outputs)
class OVQuantizationConfigTest(unittest.TestCase):
QUANTIZATION_CONFIGS = (
(None,),
(OVWeightQuantizationConfig(),),
(OVWeightQuantizationConfig(bits=8, sym=True),),
(
OVWeightQuantizationConfig(
dataset="wikitext",
bits=4,
ignored_scope={"names": ["op_name"]},
sym=False,
tokenizer="dbmdz/bert-base-german-cased",
ratio=1.0,
group_size=128,
all_layers=True,
sensitivity_metric="mean_activation_magnitude",
num_samples=100,
quant_method=OVQuantizationMethod.DEFAULT,
),
),
(OVWeightQuantizationConfig(dataset=["hello world", "i'm alive"]),),
(
OVQuantizationConfig(
ignored_scope={"names": ["op_name"]},
num_samples=100,
sym=False,
model_type="transformer",
fast_bias_correction=True,
overflow_fix="disable",
),
),
(OVQuantizationConfig(ignored_scope=nncf.IgnoredScope(names=["op_name"])),),
(OVDynamicQuantizationConfig(bits=8, sym=True),),
)
QUANTIZATION_CONFIG_DICTS = (
(dict(bits=8, sym=True), OVWeightQuantizationConfig, None),
(
dict(
dataset="wikitext",
bits=4,
ignored_scope={"names": ["op_name"]},
sym=False,
tokenizer="dbmdz/bert-base-german-cased",
ratio=1.0,
group_size=128,
all_layers=True,
sensitivity_metric="mean_activation_magnitude",
num_samples=100,
quant_method=OVQuantizationMethod.DEFAULT,
),
OVWeightQuantizationConfig,
None,
),
(dict(), OVWeightQuantizationConfig, "Can't determine type of OV quantization config"),
(
dict(ignored_scope={"names": ["op_name"]}),
OVWeightQuantizationConfig,
"Can't determine type of OV quantization config",
),
(dict(num_samples=100), OVWeightQuantizationConfig, "Can't determine type of OV quantization config"),
(dict(abc="def"), OVWeightQuantizationConfig, "Can't determine type of OV quantization config"),
(
dict(bits=8, fast_bias_correction=True, dataset="wikitext"),
OVWeightQuantizationConfig,
"Can't determine type of OV quantization config",
),
(dict(model_type="transformer"), OVQuantizationConfig, None),
(
dict(
ignored_scope={"names": ["op_name"]},
num_samples=100,
sym=False,
model_type="transformer",
fast_bias_correction=True,
overflow_fix="disable",
),
OVQuantizationConfig,
None,
),
(dict(weight_only=True), OVWeightQuantizationConfig, None),
(dict(weight_only=False), OVQuantizationConfig, None),
(dict(abc="def", weight_only=False), OVQuantizationConfig, None),
(dict(abc="def", weight_only=True), OVWeightQuantizationConfig, None),
(
dict(bits=8, fast_bias_correction=True, dataset="wikitext", weight_only=True),
OVWeightQuantizationConfig,
None,
),
(dict(bits=8, fast_bias_correction=True, weight_only=False), OVQuantizationConfig, None),
)
@parameterized.expand(QUANTIZATION_CONFIGS)
def test_config_serialization(self, quantization_config: OVQuantizationConfigBase):
ov_config = OVConfig(quantization_config=quantization_config)
with tempfile.TemporaryDirectory() as tmp_dir:
ov_config.save_pretrained(tmp_dir)
loaded_ov_config = OVConfig.from_pretrained(tmp_dir)
if quantization_config is None:
self.assertEqual(loaded_ov_config.quantization_config, None)
return
for key, value in loaded_ov_config.quantization_config.to_dict().items():
initial_value = getattr(ov_config.quantization_config, key)
self.assertEqual(value, initial_value)
@parameterized.expand(QUANTIZATION_CONFIG_DICTS)
def test_config_from_dict(self, quantization_config: dict, config_type: type, warning_log: Union[str, None]):
from optimum.intel.openvino.configuration import logger as configuration_logger
if warning_log is not None:
with self.assertLogs(configuration_logger, logging.WARN) as cm:
ov_config = OVConfig(quantization_config=quantization_config)
self.assertTrue(any(warning_log in log for log in cm.output))
else:
ov_config = OVConfig(quantization_config=quantization_config)
self.assertIsInstance(ov_config.quantization_config, config_type)
for k, v in quantization_config.items():
if hasattr(ov_config.quantization_config, k):
self.assertEqual(getattr(ov_config.quantization_config, k), v)
class InferRequestWrapperTest(unittest.TestCase):
MODEL_ID = ("openai/whisper-tiny.en",)
APPLY_CACHING = (False, True)
@staticmethod
def _generate_random_audio_data(processor):
t = np.linspace(0, 1.0, int(1000), endpoint=False)
audio_data = 0.5 * np.sin((2 + np.random.random()) * np.pi * t)
input_features = processor(
audio_data,
sampling_rate=16000,
return_tensors="pt",
).input_features
return input_features
@parameterized.expand(itertools.product(MODEL_ID, APPLY_CACHING))
def test_calibration_data_uniqueness(self, model_id, apply_caching):
ov_model = OVModelForSpeechSeq2Seq.from_pretrained(model_id, export=True, compile=True)
processor = AutoProcessor.from_pretrained(model_id)
calibration_data = []
ov_model.decoder_with_past.request = InferRequestWrapper(
ov_model.decoder_with_past.request, calibration_data, apply_caching=apply_caching
)
for _ in range(2):
input_features = self._generate_random_audio_data(processor)
ov_model.generate(input_features)
data_hashes_per_key = defaultdict(list)
data_id_per_key = defaultdict(set)
for inputs_dict in calibration_data:
for k, v in inputs_dict.items():
x = (v.numpy() if isinstance(v, torch.Tensor) else v).copy()
data_hashes_per_key[k].append(hash(x.tobytes()))
data_id_per_key[k].add(id(v))
for k, data_hashes in data_hashes_per_key.items():
# All hashes can not be equal because calibration dataset contains at least 2 different samples
self.assertTrue(any(data_hashes[0] != it for it in data_hashes))
if apply_caching:
# With caching, encoder hidden states tensors should be cached, resulting in only 2 tensors stored
self.assertTrue(len(data_id_per_key["encoder_hidden_states"]) == 2)
else:
# Without caching, encoder hidden states tensors will be unique for each collected input
self.assertTrue(len(data_id_per_key["encoder_hidden_states"]) > 2)