-
Notifications
You must be signed in to change notification settings - Fork 126
/
Copy pathutils.py
153 lines (130 loc) · 5.04 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import logging
import os
from glob import glob
import numpy as np
from huggingface_hub import model_info
from openvino.runtime import Core, Type, properties
from transformers.onnx.utils import ParameterFormat, compute_serialized_parameters_size
logger = logging.getLogger(__name__)
OV_XML_FILE_NAME = "openvino_model.xml"
OV_ENCODER_NAME = "openvino_encoder_model.xml"
OV_DECODER_NAME = "openvino_decoder_model.xml"
OV_DECODER_WITH_PAST_NAME = "openvino_decoder_with_past_model.xml"
ONNX_WEIGHTS_NAME = "model.onnx"
ONNX_ENCODER_NAME = "encoder_model.onnx"
ONNX_DECODER_NAME = "decoder_model.onnx"
ONNX_DECODER_WITH_PAST_NAME = "decoder_with_past_model.onnx"
MAX_ONNX_OPSET_2022_2_0 = 10
MAX_ONNX_OPSET = 16
MIN_ONNX_QDQ_OPSET = 13
EXTERNAL_DATA_FORMAT_SIZE_LIMIT = 2 * 1024 * 1024 * 1024
TEXTUAL_INVERSION_NAME = "learned_embeds.bin"
TEXTUAL_INVERSION_NAME_SAFE = "learned_embeds.safetensors"
TEXTUAL_INVERSION_EMBEDDING_KEY = "text_model.embeddings.token_embedding.weight"
OV_TO_NP_TYPE = {
"boolean": np.bool_,
"i8": np.int8,
"u8": np.uint8,
"i16": np.int16,
"u16": np.uint16,
"i32": np.int32,
"u32": np.uint32,
"i64": np.int64,
"u64": np.uint64,
"f16": np.float16,
"f32": np.float32,
"f64": np.float64,
}
STR_TO_OV_TYPE = {
"boolean": Type.boolean,
"f16": Type.f16,
"f32": Type.f32,
"f64": Type.f64,
"i8": Type.i8,
"i16": Type.i16,
"i32": Type.i32,
"i64": Type.i64,
"u8": Type.u8,
"u16": Type.u16,
"u32": Type.u32,
"u64": Type.u64,
"bf16": Type.bf16,
}
_HEAD_TO_AUTOMODELS = {
"feature-extraction": "OVModelForFeatureExtraction",
"fill-mask": "OVModelForMaskedLM",
"text-generation": "OVModelForCausalLM",
"text2text-generation": "OVModelForSeq2SeqLM",
"text-classification": "OVModelForSequenceClassification",
"token-classification": "OVModelForTokenClassification",
"question-answering": "OVModelForQuestionAnswering",
"image-classification": "OVModelForImageClassification",
"audio-classification": "OVModelForAudioClassification",
"stable-diffusion": "OVStableDiffusionPipeline",
"stable-diffusion-xl": "OVStableDiffusionXLPipeline",
"pix2struct": "OVModelForPix2Struct",
}
def use_external_data_format(num_parameters: int) -> bool:
"""
Returns whether or not the model requires using external data format for the ONNX export
Args:
num_parameters: Number of parameter on the model
Returns:
True if model.num_parameters() * size_of(float32) >= 2Gb False otherwise
"""
return compute_serialized_parameters_size(num_parameters, ParameterFormat.Float) >= EXTERNAL_DATA_FORMAT_SIZE_LIMIT
def _is_timm_ov_dir(model_dir):
config_file = None
has_xml = False
has_bin = False
if os.path.isdir(model_dir):
for filename in glob(os.path.join(model_dir, "*")):
if filename.endswith(".xml"):
has_xml = True
if filename.endswith(".bin"):
has_bin = True
if filename.endswith("config.json"):
config_file = filename
if config_file and has_xml and has_bin:
with open(config_file) as conf:
hf_hub_id = json.load(conf).get("hf_hub_id", None)
if hf_hub_id and model_info(hf_hub_id).library_name == "timm":
return True
return False
def _print_compiled_model_properties(compiled_model):
supported_properties = properties.supported_properties()
skip_keys = {"SUPPORTED_METRICS", "SUPPORTED_CONFIG_KEYS", supported_properties}
keys = set(compiled_model.get_property(supported_properties)) - skip_keys
for k in keys:
try:
value = compiled_model.get_property(k)
if k == properties.device.properties():
for device_key in value.keys():
logger.info(f" {device_key}:")
for k2, value2 in value.get(device_key).items():
if k2 not in skip_keys:
logger.info(f" {k2}: {value2}")
else:
logger.info(f" {k}: {value}")
except Exception:
logger.error(f"[error] Get property of '{k}' failed")
try:
logger.info("EXECUTION_DEVICES:")
for device in compiled_model.get_property("EXECUTION_DEVICES"):
logger.info(f" {device}: {Core().get_property(device, 'FULL_DEVICE_NAME')}")
except Exception:
logger.error("[error] Get FULL_DEVICE_NAME failed")