-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathconfig.go
225 lines (209 loc) · 10 KB
/
config.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
package boogie
import (
"bytes"
"errors"
"fmt"
"github.com/hscells/groove/analysis"
"github.com/hscells/groove/analysis/postqpp"
"github.com/hscells/groove/analysis/preqpp"
"github.com/hscells/groove/eval"
"github.com/hscells/groove/learning"
"github.com/hscells/groove/output"
"github.com/hscells/groove/preprocess"
"github.com/hscells/groove/query"
"github.com/hscells/groove/rank"
"github.com/hscells/merging"
"github.com/hscells/trecresults"
"io/ioutil"
"os"
"strconv"
)
// RegisterSources initiates boogie with all the possible options in a pipeline.
func RegisterSources(dsl Pipeline) error {
// Statistic sources.
// Configuration of other parts of the pipeline can depend on the statistics source
// so this needs to be set up first.
switch s := dsl.Statistic.Source; s {
case "elasticsearch":
ss, err := NewElasticsearchStatisticsSource(dsl.Statistic.Options)
if err != nil {
return err
}
RegisterStatisticSource(s, ss)
case "terrier":
// TODO rework code to allow linux to use Terrier.
//RegisterStatisticSource(s, NewTerrierStatisticsSource(dsl.Statistic.Options))
case "entrez":
ss, err := NewEntrezStatisticsSource(dsl.Statistic.Options)
if err != nil {
return err
}
RegisterStatisticSource(s, ss)
}
// Query sources.
RegisterQuerySource("medline", NewTransmuteQuerySource(query.MedlineTransmutePipeline, dsl.Query.Options))
RegisterQuerySource("pubmed", NewTransmuteQuerySource(query.PubMedTransmutePipeline, dsl.Query.Options))
RegisterQuerySource("cqr", NewTransmuteQuerySource(query.CQRTransmutePipeline, dsl.Query.Options))
RegisterQuerySource("keyword", NewKeywordQuerySource(dsl.Query.Options))
RegisterQuerySource("protocol", query.NewProtocolQuerySource())
RegisterQuerySource("tar", query.TARTask2QueriesSource{})
// Preprocessor sources.
RegisterPreprocessor("alphanum", preprocess.AlphaNum)
RegisterPreprocessor("lowercase", preprocess.Lowercase)
RegisterPreprocessor("strip_numbers", preprocess.StripNumbers)
// Transformations.
RegisterTransformationBoolean("date_restrictions", preprocess.DateRestrictions(dsl.PreprocessOptions["date_restrictions.file"]))
RegisterTransformationBoolean("simplify", preprocess.Simplify)
RegisterTransformationBoolean("and_simplify", preprocess.AndSimplify)
RegisterTransformationBoolean("or_simplify", preprocess.OrSimplify)
RegisterTransformationBoolean("rct_filter", preprocess.RCTFilter)
RegisterTransformationBoolean("relax_phrases", preprocess.RelaxPhrases)
RegisterTransformationBoolean("remove_exp", preprocess.RemoveExplosionMeSH)
RegisterTransformationElasticsearch("analyse", preprocess.Analyse)
RegisterTransformationElasticsearch("set_analyse", preprocess.SetAnalyseField)
// Measurement sources.
RegisterMeasurement("term_count", analysis.TermCount)
RegisterMeasurement("tf", preqpp.TF{})
RegisterMeasurement("sum_idf", preqpp.SumIDF)
RegisterMeasurement("avg_idf", preqpp.AvgIDF)
RegisterMeasurement("max_idf", preqpp.MaxIDF)
RegisterMeasurement("std_idf", preqpp.StdDevIDF)
RegisterMeasurement("avg_ictf", preqpp.AvgICTF)
RegisterMeasurement("query_scope", preqpp.QueryScope)
RegisterMeasurement("scs", preqpp.SimplifiedClarityScore)
RegisterMeasurement("scq", preqpp.SCQ{})
RegisterMeasurement("sum_cqs", preqpp.SummedCollectionQuerySimilarity)
RegisterMeasurement("max_cqs", preqpp.MaxCollectionQuerySimilarity)
RegisterMeasurement("avg_cqs", preqpp.AverageCollectionQuerySimilarity)
RegisterMeasurement("wig", postqpp.WeightedInformationGain)
RegisterMeasurement("weg", postqpp.WeightedExpansionGain)
RegisterMeasurement("ncq", postqpp.NormalisedQueryCommitment)
RegisterMeasurement("clarity_score", postqpp.ClarityScore)
RegisterMeasurement("retrieval_size", preqpp.RetrievalSize)
RegisterMeasurement("boolean_clauses", analysis.BooleanClauses)
RegisterMeasurement("boolean_keywords", analysis.BooleanKeywords)
RegisterMeasurement("boolean_fields", analysis.BooleanFields)
RegisterMeasurement("boolean_truncated", analysis.BooleanTruncated)
RegisterMeasurement("boolean_nonatomic", analysis.BooleanNonAtomicClauses)
RegisterMeasurement("boolean_fields_abstract", analysis.BooleanFieldsAbstract)
RegisterMeasurement("boolean_fields_title", analysis.BooleanFieldsTitle)
RegisterMeasurement("boolean_fields_mesh", analysis.BooleanFieldsMeSH)
RegisterMeasurement("boolean_fields_other", analysis.BooleanFieldsOther)
RegisterMeasurement("boolean_and_count", analysis.BooleanAndCount)
RegisterMeasurement("boolean_or_count", analysis.BooleanOrCount)
RegisterMeasurement("boolean_not_count", analysis.BooleanNotCount)
RegisterMeasurement("mesh_keywords", analysis.MeshKeywordCount)
RegisterMeasurement("mesh_exploded", analysis.MeshExplodedCount)
RegisterMeasurement("mesh_non_exploded", analysis.MeshNonExplodedCount)
RegisterMeasurement("mesh_avg_depth", analysis.MeshAvgDepth)
RegisterMeasurement("mesh_max_depth", analysis.MeshMaxDepth)
// Evaluations measurements.
RegisterEvaluator("precision", eval.Precision)
RegisterEvaluator("recall", eval.Recall)
RegisterEvaluator("num_rel", eval.NumRel)
RegisterEvaluator("num_ret", eval.NumRet)
RegisterEvaluator("num_rel_ret", eval.NumRelRet)
RegisterEvaluator("f05_measure", eval.F05Measure)
RegisterEvaluator("f1_measure", eval.F1Measure)
RegisterEvaluator("f3_measure", eval.F3Measure)
RegisterEvaluator("wss", eval.NewWSSEvaluator(0)) // The collection size is configured later.
RegisterEvaluator("residual_precision", eval.NewResidualEvaluator(eval.Precision))
RegisterEvaluator("residual_recall", eval.NewResidualEvaluator(eval.Recall))
RegisterEvaluator("residual_f05_measure", eval.NewResidualEvaluator(eval.F05Measure))
RegisterEvaluator("residual_f1_measure", eval.NewResidualEvaluator(eval.F1Measure))
RegisterEvaluator("residual_f3_measure", eval.NewResidualEvaluator(eval.F3Measure))
RegisterEvaluator("residual_wss", eval.NewResidualEvaluator(eval.NewWSSEvaluator(0))) // The collection size is configured later.
RegisterEvaluator("mle_precision", eval.NewMaximumLikelihoodEvaluator(eval.Precision))
RegisterEvaluator("mle_recall", eval.NewMaximumLikelihoodEvaluator(eval.Recall))
RegisterEvaluator("mle_f05_measure", eval.NewMaximumLikelihoodEvaluator(eval.F05Measure))
RegisterEvaluator("mle_f1_measure", eval.NewMaximumLikelihoodEvaluator(eval.F1Measure))
RegisterEvaluator("mle_f3_measure", eval.NewMaximumLikelihoodEvaluator(eval.F3Measure))
RegisterEvaluator("mle_wss", eval.NewMaximumLikelihoodEvaluator(eval.NewWSSEvaluator(0))) // The collection size is configured later.
// Output formats.
RegisterMeasurementFormatter("json", output.JsonMeasurementFormatter)
RegisterMeasurementFormatter("csv", output.CsvMeasurementFormatter)
RegisterEvaluationFormatter("json", output.JsonEvaluationFormatter)
// Query Rewrite transformations.
RegisterRewriteTransformation("logical_operator_replacement", learning.NewLogicalOperatorTransformer())
RegisterRewriteTransformation("adj_range", learning.NewAdjacencyRangeTransformer())
RegisterRewriteTransformation("mesh_explosion", learning.NewMeSHExplosionTransformer())
RegisterRewriteTransformation("mesh_parent", learning.NewMeshParentTransformer())
RegisterRewriteTransformation("field_restrictions", learning.NewFieldRestrictionsTransformer())
RegisterRewriteTransformation("adj_replacement", learning.NewAdjacencyReplacementTransformer())
RegisterRewriteTransformation("clause_removal", learning.NewClauseRemovalTransformer())
err := RegisterCui2VecTransformation(dsl)
if err != nil {
return err
}
RegisterScorer("bm25", &rank.BM25Scorer{K1: 1.2, B: 0.75})
RegisterScorer("tfidf", &rank.TFIDFScorer{})
RegisterMerger("combSUM", merging.CombSUM{})
RegisterMerger("combMNZ+minmax", merging.CombMNZ{})
RegisterMerger("borda+softmax", merging.Borda{})
// Machine learning models.
switch m := dsl.Learning.Model; m {
// For the case of query chains, we need to also configure the candidate selector.
case "query_chain":
var model *learning.QueryChain
var (
depth int
err error
)
depth = 5
if v, ok := dsl.Learning.Options["depth"]; ok {
depth, err = strconv.Atoi(v)
if err != nil {
return err
}
}
switch cs := dsl.Learning.Options["candidate_selector"]; cs {
case "ltr_quickrank":
if dsl.Learning.Train != nil {
model = learning.NewQuickRankQueryChain(dsl.Learning.Options["binary"], dsl.Learning.Train, learning.QuickRankCandidateSelectorMaxDepth(depth))
} else {
model = learning.NewQuickRankQueryChain(dsl.Learning.Options["binary"], dsl.Learning.Test, learning.QuickRankCandidateSelectorMaxDepth(depth), learning.QuickRankCandidateSelectorStatisticsSource(statisticSourceMapping[dsl.Statistic.Source]))
}
case "reinforcement":
model = learning.NewReinforcementQueryChain()
case "nearest":
if dsl.Learning.Train != nil {
modelName := dsl.Learning.Options["model_name"]
model = learning.NewNearestNeighbourQueryChain(learning.NearestNeighbourModelName(modelName), learning.NearestNeighbourDepth(depth))
} else {
modelName := dsl.Learning.Options["model_name"]
model = learning.NewNearestNeighbourQueryChain(learning.NearestNeighbourLoadModel(modelName), learning.NearestNeighbourDepth(depth), learning.NearestNeighbourStatisticsSource(statisticSourceMapping[dsl.Statistic.Source]))
}
case "oracle":
b, err := ioutil.ReadFile(dsl.Output.Evaluations.Qrels)
if err != nil {
return err
}
qrels, err := trecresults.QrelsFromReader(bytes.NewReader(b))
if err != nil {
return err
}
model = learning.NewRankOracleCandidateSelector(statisticSourceMapping[dsl.Statistic.Source], qrels, evaluationMapping[dsl.Learning.Options["measurement"]], depth)
}
if v, ok := dsl.Learning.Options["transformed_output"]; ok {
model.TransformedOutput = v
}
if v, ok := dsl.Learning.Options["features"]; ok {
fmt.Println("loading features")
f, err := os.Open(v)
if err != nil {
return err
}
model.LearntFeatures, err = learning.LoadFeatures(f)
if err != nil {
return err
}
fmt.Printf("loaded %d features\n", len(model.LearntFeatures))
}
RegisterModel(m, model)
default:
if len(dsl.Learning.Model) > 0 {
return errors.New(fmt.Sprintf("could not load model of type %s", m))
}
}
return nil
}