-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
205 lines (159 loc) · 5.35 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# from http://nlp.cs.washington.edu/zeroshot/evaluate.py
import codecs
import re
from itertools import groupby
import string
import sys
import numpy as np
from docopt import docopt
def main():
args = docopt("""
Usage:
analyze.py <test_set> <answer_file>
""")
q_aprf = read_results(args['<test_set>'], args['<answer_file>'])
print(pretify(q_aprf))
def read_results(test_set, answer_file):
with codecs.open(test_set, 'r', 'utf-8') as fin:
data = [line.strip().split('\t') for line in fin]
metadata = [x[:4] for x in data]
gold = [set(x[4:]) for x in data]
with codecs.open(answer_file, 'r', 'utf-8') as fin:
answers = [line.strip() for line in fin]
new_answers = []
for answer in answers:
if answer != 'no_answer':
new_answers.append(answer)
else:
new_answers.append(None)
telemetry = []
for m, g, a in zip(metadata, gold, new_answers):
stats = score(g, a)
telemetry.append([m[0], m[1], str(len(g) > 0), stats])
return aprf(telemetry)
def parse_no_answers(results):
p_answer = [a for i, a in sorted([(int(i), a) for i, a in results[0]['scores'].items()])]
p_no_answer = [a for i, a in sorted([(int(i), a) for i, a in results[0]['na'].items()])]
import numpy as np
return [answer > no_answer for answer, no_answer in zip(p_answer, p_no_answer)]
def gb(collection, keyfunc):
return [(k, list(g)) for k, g in groupby(sorted(collection, key=keyfunc), keyfunc)]
def aprf(g):
tp, tn, sys_pos, real_pos = sum(map(lambda x: x[-1], g))
total = len(g)
# a = float(tp + tn) / total
# nr = tn / float(total - real_pos)
# npr = tn / float(total - sys_pos)
if tp == 0:
p = r = f = 0.0
else:
p = tp / float(sys_pos)
r = tp / float(real_pos)
f = 2 * p * r / (p + r)
# return np.array((a, p, r, f, npr, nr))
return np.array((p, r, f))
def score(gold, answer):
if len(gold) > 0:
gold = set.union(*[simplify(g) for g in gold])
answer = simplify(answer)
result = np.zeros(4)
if answer == gold:
if len(gold) > 0:
result[0] += 1
else:
result[1] += 1
if len(answer) > 0:
result[2] += 1
if len(gold) > 0:
result[3] += 1
return result
def simplify(answer):
return set(''.join(c for c in t if c not in PUNCTUATION) for t in answer.strip().lower().split()) - {'the', 'a', 'an', 'and', ''}
def pretify(results):
return ' \t '.join([': '.join((k, v)) for k, v in zip(['Precision', 'Recall', 'F1'], map(lambda r: '{0:.2f}%'.format(r*100), results))])
PUNCTUATION = set(string.punctuation)
if __name__ == "__main__":
main()
def zero_re_eval(test_file, answer_file):
q_aprf = read_results(test_file, answer_file)
return pretify(q_aprf)
def read_results(test_set, answer_file):
with codecs.open(test_set, "r", "utf-8") as fin:
data = [line.strip().split("\t") for line in fin]
metadata = [x[:4] for x in data]
gold = [set(x[4:]) for x in data]
new_gold = []
for g in gold:
if g:
new_gold.append(g)
# new_gold = gold
with codecs.open(answer_file, "r", "utf-8") as fin:
answers = [line.strip() for line in fin]
new_answers = []
# ignore the header in answers
for answer in answers[1:]:
if answer != "no_answer":
new_answers.append(answer)
else:
new_answers.append("")
telemetry = []
for m, g, a in zip(metadata, new_gold, new_answers):
stats = score(g, a)
telemetry.append([m[0], m[1], str(len(g) > 0), stats])
return aprf(telemetry)
def parse_no_answers(results):
p_answer = [
a for i, a in sorted([(int(i), a) for i, a in results[0]["scores"].items()])
]
p_no_answer = [
a for i, a in sorted([(int(i), a) for i, a in results[0]["na"].items()])
]
import numpy as np
return [answer > no_answer for answer, no_answer in zip(p_answer, p_no_answer)]
def gb(collection, keyfunc):
return [(k, list(g)) for k, g in groupby(sorted(collection, key=keyfunc), keyfunc)]
def aprf(g):
tp, tn, sys_pos, real_pos = sum(map(lambda x: x[-1], g))
total = len(g)
# a = float(tp + tn) / total
# nr = tn / float(total - real_pos)
# npr = tn / float(total - sys_pos)
if tp == 0:
p = r = f = 0.0
else:
p = tp / float(sys_pos)
r = tp / float(real_pos)
f = 2 * p * r / (p + r)
# return np.array((a, p, r, f, npr, nr))
return np.array((p, r, f))
def score(gold, answer):
if len(gold) > 0:
gold = set.union(*[simplify(g) for g in gold])
answer = simplify(answer)
result = np.zeros(4)
if answer == gold:
if len(gold) > 0:
result[0] += 1
else:
result[1] += 1
if len(answer) > 0:
result[2] += 1
if len(gold) > 0:
result[3] += 1
return result
def simplify(answer):
return set(
"".join(c for c in t if c not in PUNCTUATION)
for t in answer.strip().lower().split()
) - {"the", "a", "an", "and", ""}
def pretify(results):
return " \t ".join(
[
": ".join((k, v))
for k, v in zip(
["Precision", "Recall", "F1"],
map(lambda r: "{0:.2f}%".format(r * 100), results),
)
]
)
PUNCTUATION = set(string.punctuation)