From 6b18fc64c07a844113d23869c169a77e66c4112a Mon Sep 17 00:00:00 2001 From: Houston Haynes <8174976+houstonhaynes@users.noreply.github.com> Date: Sat, 15 Feb 2025 22:45:44 -0500 Subject: [PATCH] Fix URL case issues --- docs/quickstart.fsx | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/docs/quickstart.fsx b/docs/quickstart.fsx index 8e4ac497..50788170 100644 --- a/docs/quickstart.fsx +++ b/docs/quickstart.fsx @@ -44,7 +44,7 @@ Here we cover some key tasks involved in a typical machine learning pipeline and Furnace provides the `cref:T:Furnace.Data.Dataset` type that represents a data source and the `cref:T:Furnace.Data.DataLoader` type that handles the loading of data from datasets and iterating over [minibatches](https://en.wikipedia.org/wiki/Stochastic_gradient_descent#Iterative_method) of data. -See the [Furnace.Data](/reference/Furnace-data.html) namespace for the full API reference. +See the [Furnace.Data](/Furnace/reference/furnace-data.html) namespace for the full API reference. ### Datasets @@ -108,7 +108,7 @@ Many machine learning models are differentiable functions whose parameters can b Furnace provides the most commonly used model building blocks including convolutions, transposed convolutions, batch normalization, dropout, recurrent and other architectures. -See the [Furnace.Model](/reference/Furnace-model.html) namespace for the full API reference. +See the [Furnace.Model](/Furnace/reference/furnace-model.html) namespace for the full API reference. ### Constructing models, PyTorch style