Skip to content

Latest commit

 

History

History
45 lines (29 loc) · 1.94 KB

README.md

File metadata and controls

45 lines (29 loc) · 1.94 KB

Semantic segmentation

The sample training script was made to train object detection models on PASCAL VOC 2012.

Getting started

Ensure that you have holocron installed

git clone https://github.com/frgfm/Holocron.git
pip install -e "Holocron/.[training]"

No need to download the dataset, torchvision will handle this for you! From there, you can run your training with the following command

python train.py VOC2012 --arch unet3p -b 4 -j 16 --opt radam --lr 1e-5 --sched onecycle --epochs 20

Personal leaderboard

PASCAL VOC 2012

Performances are evaluated on the validation set of the dataset using the mean IoU metric.

Size (px) Epochs args mean IoU # Runs
256 200 VOC2012 --arch unet_rexnet13 -b 16 --loss label_smoothing --opt adamp --device 0 --lr 2e-3 --epochs 200 32.14 1
256 20 VOC2012 --arch unet3p -b 4 -j 16 --opt radam --lr 1e-5 --sched onecycle --epochs 20 14.17 1

Model zoo

Model mean IoU Param # MACs Interpolation Image size
unet 18.11M bilinear 256
unetp 28.28M bilinear 256
unetpp 29.54M bilinear 256
unet3p 26.93M bilinear 256
unet_tvvgg11 32.17M bilinear 256
unet_tvresnet34 36.25M bilinear 256
unet_rexnet13 32.14 9.34M bilinear 256