-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
166 lines (133 loc) · 5.62 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import torch
import torch.nn as nn
import torch.nn.functional as F
import logging
def categorical_accuracy(preds, y):
"""Return accuracy given a batch of label distributions and true labels"""
max_preds = preds.argmax(dim=1, keepdim=True)
correct = max_preds.squeeze(1).eq(y)
return correct.sum().float() / torch.FloatTensor([y.shape[0]])
class LR(nn.Module):
"""Logistic regressor over mean input embedding"""
def __init__(self, vocab_size, embedding_dim, n_classes):
super(LR, self).__init__()
self.embeddings = nn.Embedding(vocab_size, embedding_dim)
self.classifier = nn.Sequential(
nn.Linear(embedding_dim, n_classes)
)
def forward(self, data, probs=False):
text, length = data
text_embed = self.embeddings(text)
mean_embed = text_embed.sum(0)
mean_embed /= (length.float().unsqueeze(1) + 1)
logits = self.classifier(mean_embed)
return logits
class DAN(nn.Module):
"""Deep Averaging Network (Iyyer et al., 2015)."""
def __init__(self, vocab_size, embedding_dim, n_classes, n_layers=3,
hidden_dim=300, dropout=0.0):
super(DAN, self).__init__()
self.embeddings = nn.Embedding(vocab_size, embedding_dim)
layers = [nn.Linear(embedding_dim, hidden_dim), nn.ReLU(),
nn.Dropout(dropout)]
for _ in range(n_layers - 1):
layers.extend([
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Dropout(dropout)
])
layers.append(nn.Linear(hidden_dim, n_classes))
self.classifier = nn.Sequential(*layers)
self._softmax = nn.LogSoftmax()
def forward(self, data, probs=False):
# data is (text, length) tuple
# text.shape == (sent len, batch size)
text, length = data
# text_embed.shape == (sent len, batch size, emb dim)
text_embed = self.embeddings(text)
# mean_embed.shape == (batch size, emb dim)
mean_embed = text_embed.sum(0)
mean_embed /= (length.float().unsqueeze(1) + 1)
logits = self.classifier(mean_embed)
if probs:
return self._softmax(logits)
else:
return logits
class CNN(nn.Module):
"""Convolutional neural networks from (Kim, 2014)."""
def __init__(self, vocab_size, embedding_dim, n_classes,
n_filters=100, filter_sizes=(3, 4, 5), dropout=.0):
super(CNN, self).__init__()
self.embeddings = nn.Embedding(vocab_size, embedding_dim)
self.convs = nn.ModuleList([nn.Conv2d(in_channels=1,
out_channels=n_filters,
kernel_size=(fs, embedding_dim))
for fs in filter_sizes])
self.classifier = nn.Linear(len(filter_sizes)*n_filters, n_classes)
self.dropout = nn.Dropout(dropout)
def forward(self, batch):
# text.shape == [sent len, batch size]
text, length = batch
x = text.permute(1, 0)
# x.shape = [batch size, sent len]
embedded = self.embeddings(x)
# embedded.shape = [batch size, sent len, emb dim]
embedded = embedded.unsqueeze(1)
# embedded.shape == [batch size, 1, sent len, emb dim]
conved = [F.relu(conv(embedded)).squeeze(3) for conv in self.convs]
# conved[n].shape = =[batch size, n_filters, sent len - filter_sizes[n]]
pooled = [F.max_pool1d(conv, conv.shape[2]).squeeze(2) for conv in conved]
# pooled.shape == [batch size, n_filters]
cat = self.dropout(torch.cat(pooled, dim=1))
return self.classifier(cat)
def get_model(model_type, vocab_size, emb_dim, n_classes, dropout=.0):
if model_type == 'lr':
if dropout > 0:
logging.warning("Logistic Regression doesn't support dropout.")
return LR(vocab_size, emb_dim, n_classes)
elif model_type == 'dan':
return DAN(vocab_size, emb_dim, n_classes, dropout=dropout)
elif model_type == 'cnn':
return CNN(vocab_size, emb_dim, n_classes, dropout=dropout)
else:
raise ValueError('Model type not implemented')
def train(model, iterator, optimizer, criterion):
epoch_loss = 0
epoch_acc = 0
model.train()
for batch in iterator:
optimizer.zero_grad()
predictions = model(batch.text)
loss = criterion(predictions, batch.label)
acc = categorical_accuracy(predictions, batch.label)
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), 5)
optimizer.step()
epoch_loss += loss.item()
epoch_acc += acc.item()
return epoch_loss / len(iterator), epoch_acc / len(iterator)
def evaluate(model, iterator, criterion):
epoch_loss = 0
epoch_acc = 0
model.eval()
with torch.no_grad():
for batch in iterator:
predictions = model(batch.text)
loss = criterion(predictions, batch.label)
acc = categorical_accuracy(predictions, batch.label)
epoch_loss += loss.item()
epoch_acc += acc.item()
return epoch_loss / len(iterator), epoch_acc / len(iterator)
def evaluate_rank(model, iterator, criterion):
model.embeddings.weight.requires_grad = True
epoch_loss = 0
epoch_acc = 0
model.eval()
for batch in iterator:
predictions = model(batch.text)
loss = criterion(predictions, batch.label)
acc = categorical_accuracy(predictions, batch.label)
loss.backward()
epoch_loss += loss.item()
epoch_acc += acc.item()
return epoch_loss / len(iterator), epoch_acc / len(iterator)