-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsudoku_generator.py
209 lines (172 loc) · 5.28 KB
/
sudoku_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#sudoku_generator
#copyright: fiorezhang@sina.com
import numpy as np
#calculate the remainder for x in range: 1~y
def remainder(x, y):
return (x-1)%y+1
''' #comment out the original matrix generator as generate in a function
#define the size of matrix
SIZE = 3
m_basic = np.zeros((SIZE * SIZE, SIZE * SIZE), dtype='int8')
'''
'''too complicated, easier way as below
#generate the 1st piece with SIZE * SIZE size
temp = 0
for i in range(SIZE):
for j in range(SIZE):
temp += 1
m_basic[i, j] = temp
#generate the 1st line of pieces with (SIZE*SIZE) * SIZE size
for i in range(SIZE):
for k in range(SIZE):
for j in range(SIZE):
m_basic[i, k*SIZE+j] = remainder((m_basic[i, j] + k*SIZE), SIZE*SIZE)
#generate the whole matrix
for k in range(SIZE):
for i in range(SIZE):
for j in range(SIZE*SIZE):
m_basic[k*SIZE+i, j] = remainder((m_basic[i, j] + k), SIZE*SIZE)
'''
'''
#generate one matrix which fulfill the sudoku rule, as the basic for others
for i in range(SIZE*SIZE):
for j in range(SIZE*SIZE):
m_basic[i, j] = remainder((1 + SIZE*(i%SIZE) + int(i/SIZE) + j), SIZE*SIZE)
#print(m_basic)
'''
'''define some functions to generate new matrix based from the original matrix,
including swap rows within same bundle, or swap two bundles of rows,
similarlly to the columns, finally we make a re-map from 1~n to a random sort of 1~n
'''
#swap rows within a bundle, check the row number
def swap_row(m, x, y):
s = m.shape[0]#columns/rows in matrix
b = (int)(np.sqrt(s))#bundles of columns/rows in matrix
t = np.zeros(s)#use to buffer the data to be swap
#check whether x and y in a bundle
if (int(x/b) != int(y/b)) or (x < 0) or (x >= s) or (y < 0) or (y >= s) or (x == y):
print('ERROR')
return m
for j in range(s):
t[j] = m[x, j]
m[x, j] = m[y, j]
m[y, j] = t[j]
#print(m)
return m
#swap bundles of rows, check the bundle number
def swap_row_b(m, x, y):
s = m.shape[0]#columns/rows in matrix
b = (int)(np.sqrt(s))#bundles of columns/rows in matrix
t = np.zeros(s)#use to buffer the data to be swap
#check x and y
if (x < 0) or (x >= b) or (y < 0) or (y >= b) or (x == y):
print('ERROR')
return m
for k in range(b):
for j in range(s):
t[j] = m[x*b+k, j]
m[x*b+k, j] = m[y*b+k, j]
m[y*b+k, j] = t[j]
#print(m)
return m
#swap columns within a bundle, check the colunm number
def swap_col(m, x, y):
s = m.shape[0]#columns/rows in matrix
b = (int)(np.sqrt(s))#bundles of columns/rows in matrix
t = np.zeros(s)#use to buffer the data to be swap
#check whether x and y in a bundle
if (int(x/b) != int(y/b)) or (x < 0) or (x >= s) or (y < 0) or (y >= s) or (x == y):
print('ERROR')
return m
for i in range(s):
t[i] = m[i, x]
m[i, x] = m[i, y]
m[i, y] = t[i]
#print(m)
return m
#swap bundles of columns, check the bundle number
def swap_col_b(m, x, y):
s = m.shape[0]#columns/rows in matrix
b = (int)(np.sqrt(s))#bundles of columns/rows in matrix
t = np.zeros(s)#use to buffer the data to be swap
#check x and y
if (x < 0) or (x >= b) or (y < 0) or (y >= b) or (x == y):
print('ERROR')
return m
for k in range(b):
for i in range(s):
t[i] = m[i, x*b+k]
m[i, x*b+k] = m[i, y*b+k]
m[i, y*b+k] = t[i]
#print(m)
return m
#remap 1~n in matrix into a random shuffled serial of 1~n, ex: [123456789]->[597326841]
def remap(m):
s = m.shape[0]
n = np.zeros((s, s), dtype='int8')#new a matrix to contain the remapped data
t = np.zeros(s, dtype='int8')
for i in range(s):
t[i] = i+1
np.random.shuffle(t)
#print(t)
for i in range(s):
for j in range(s):
n[i, j] = t[(m[i, j]-1)]
#print(n)
return n
#shuffle a matrix with swap rows/columns and remap the cell
def shuffle(m):
s = m.shape[0]
b = (int)(np.sqrt(s))
m = remap(m)
for i in range(s):
l = np.random.randint(b, size=1)
[j, k] = np.random.randint(l*b, l*b+b, size=2)
#print(j, k)
if j != k:
m = swap_row(m, j, k)
for i in range(b):
[j, k] = np.random.randint(b, size=2)
#print(j, k)
if j != k:
m = swap_row_b(m, j, k)
for i in range(s):
l = np.random.randint(b, size=1)
[j, k] = np.random.randint(l*b, l*b+b, size=2)
#print(j, k)
if j != k:
m = swap_col(m, j, k)
for i in range(b):
[j, k] = np.random.randint(b, size=2)
#print(j, k)
if j != k:
m = swap_col_b(m, j, k)
return m
#generate a matrix with some cell masked as 0, the visible cells close to the percentage given
def mask(m, v):
s = m.shape[0]
n = np.random.rand(s, s)
#print(n)
#o = np.where(n<=v, 1, 0) #calculate how many '1' in the sparse matrix
#print(o)
#print(o.sum(), "/", s*s, " -- ", o.sum()/(s*s), v)
m = np.where(n<=v, m, 0)
return m
#generate a pair of matrix, return the matrix and the masked matrix. Size: must be a square number, how many rows. Visible: a float within 0~1, percentage for how many visible(unmasked)
def generator(size, visible):
s = size
v = visible
b = (int)(np.sqrt(s))
m = np.zeros((s, s), dtype='int8')
for i in range(s):
for j in range(s):
m[i, j] = remainder((1 + b*(i%b) + int(i/b) + j), s)
m = shuffle(m)
n = mask(m, v)
return (n, m)
####test functions
'''
ans, que = generator(9, 0.9)
print(ans)
print(que)
'''