-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcorrelator.py
executable file
·658 lines (571 loc) · 25.5 KB
/
correlator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
import configtimeobj
import jackknife
import math
import vev
import logging
import newton
class Correlator(configtimeobj.Cfgtimeobj):
made_symmetric = False
symmetry = None
vevdata = None
period = None
# op1 = None
# op2 = None
asv = None
jkasv = None
emass_skip_times = []
@classmethod
def fromOpvalCTO(cls, opval1, opval2, dts=None):
if not opval1.compatible(opval2):
raise Exception("Incompatible opbjects")
if dts is None:
logging.warning("No dts given, using all")
dts = opval1.times
times = opval1.times
configs = opval1.configs
numtimes = opval1.numtimes
get1 = opval1.get
get2 = opval2.get
data = {}
for cfg in configs:
opc1 = get1(config=cfg)
opc2 = get2(config=cfg)
inerdata = {}
for dt in dts:
#acc = 0.0
acc = math.fsum(opc1[(t + dt) % numtimes] * opc2[t] for t in times)
# for t in times:
# shifted_t = (t + dt) % numtimes
# acc += opc1[shifted_t] * opc2[t]
inerdata[dt] = acc / float(numtimes)
data[cfg] = inerdata
vev1 = opval1.average_over_times()
vev2 = opval2.average_over_times()
# data = {cfg:
# {dt:
# math.fsum(get1(config=cfg, time=((t+dt)%numtimes))*get2(config=cfg, time=t)
# for t in times)/float(numtimes)
# for dt in dts }
# for cfg in configs}
return cls(data, vev1, vev2)
def __init__(self, datadict, vev1, vev2):
if vev1 is not None and vev2 is not None:
self.vev1 = vev.Vev(vev1)
self.vev2 = vev.Vev(vev2)
else:
self.vev1 = None
self.vev2 = None
super(Correlator, self).__init__(datadict)
@classmethod
def fromDataDicts(cls, corr, vev1, vev2):
""" Create a correlator from a dictionaries for the correlator, and vevs
"""
return cls(corr, vev1, vev2)
def verify(self):
logging.debug("verifying correlator")
if self.vev1 is not None:
assert self.configs == self.vev1.configs
assert self.configs == self.vev2.configs
super(Correlator, self).verify()
def writefullfile(self, filename, comp=False):
if self.vev1 is not None:
logging.debug("writting vevs to %s", filename + ".vev1,2")
self.vev1.writefullfile(filename + ".vev1")
self.vev2.writefullfile(filename + ".vev2")
logging.debug("writting correlator to %s", filename + ".cor")
super(Correlator, self).writefullfile(filename + ".cor", comp=comp)
def average_sub_vev(self):
if not self.asv:
if self.vev1 is None:
self.asv = self.average_over_configs()
else:
vev1 = self.vev1.average()
vev2 = self.vev2.average()
self.asv = {t: corr - vev1 * vev2
for t, corr in self.average_over_configs().iteritems()}
return self.asv
def jackknife_average_sub_vev(self):
if not self.jkasv:
if self.vev1 is None:
self.jkasv = self.jackknifed_averages()
else:
jkvev1 = self.vev1.jackknife()
jkvev2 = self.vev2.jackknife()
#corrjk = self.jackknifed_averages()
jk = configtimeobj.Cfgtimeobj.fromDataDict(self.jackknifed_averages())
self.jkasv = {c: {t: jk.get(config=c, time=t) - jkvev1[c] * jkvev2[c]
for t in self.times}
for c in self.configs}
return self.jkasv
def jackknifed_errors(self):
jk = configtimeobj.Cfgtimeobj.fromDataDict(self.jackknife_average_sub_vev())
asv = self.average_sub_vev()
return {t: jackknife.errorbars(asv[t], jk.get(time=t)) for t in self.times}
def prune_invalid(self, sigma=1, delete=False):
logging.info("original times {}-{}".format( min(self.times), max(self.times) ) )
asv = self.average_sub_vev()
errors = self.jackknifed_errors()
# new_times = [t for t in self.times if asv[t] - 2.0 * errors[t] > 0.0]
new_times = []
for t in self.times:
if (abs(asv[t]) - errors[t]*sigma) > 0.0:
new_times.append(t)
else:
break
if len(new_times) < 2:
logging.error("this correlator has less than 2 valid times!! Skipping pruing")
else:
logging.info("pruned times down to {}-{}".format( min(new_times), max(new_times) ) )
if delete:
for removed_times in [t for t in self.times if t > max(new_times)]:
logging.info("removing data for time {}".format(removed_times))
for cfg in self.configs:
del self.data[cfg][removed_times]
self.times = new_times
self.asv = None
self.jkasv = None
def effective_mass(self, dt):
asv = self.average_sub_vev()
emass = {}
for t in self.times[:-dt]:
try:
emass[t] = (1.0 / float(dt)) * math.log(asv[t] / asv[t + dt])
except ValueError:
logging.debug("invalid argument to log at t={}, setting to NaN".format(t))
emass[t] = float('NaN')
except KeyError:
logging.error("index out of range")
except ZeroDivisionError:
logging.error("Div by zero either dt:{} or average value sub vev {}".format(dt,asv[t + dt]))
emass[t] = float('NaN')
return emass
def effective_amp(self, dt):
asv = self.average_sub_vev()
emass = {}
eamp = {}
for t in self.times[:-dt]:
try:
emass[t] = (1.0 / float(dt)) * math.log(asv[t] / asv[t + dt])
eamp[t] = asv[t] * math.exp(emass[t]*t)
except ValueError:
logging.debug("invalid argument to log at t={}, setting to NaN".format(t))
emass[t] = float('NaN')
eamp[t] = float('NaN')
except KeyError:
logging.error("index out of range")
except ZeroDivisionError:
logging.error("Div by zero either dt:{} or average value sub vev {}".format(dt,asv[t + dt]))
emass[t] = float('NaN')
eamp[t] = float('NaN')
#exit()
return eamp
def periodic_effective_mass(self, dt, fast=True, period=None):
if self.symmetry is None:
logging.warning("Called periodic effective mass without symmetry determined")
self.determine_symmetry()
if self.symmetry is None:
logging.error("Called periodic effective mass and symmetry can not be found")
raise RuntimeError("Could not determine symmetry")
if self.symmetry == "symmetric":
logging.info("Calling cosh emass")
return self.cosh_effective_mass(dt, fast=fast, period=period)
if self.symmetry == "anti-symmetric":
logging.info("Calling sinh emass")
return self.sinh_effective_mass(dt, fast=fast, period=period)
logging.error("Symmetry is not 'symmetric' nor 'anti-symmetric'")
raise RuntimeError("Could not determine symmetry")
def periodic_effective_mass_errors(self, dt, fast=True, period=None):
if self.symmetry is None:
logging.warning("Called periodic effective mass without symmetry determined")
self.determine_symmetry()
if self.symmetry is None:
logging.error("Called periodic effective mass and symmetry can not be found")
raise RuntimeError("Could not determine symmetry")
if self.symmetry == "symmetric":
return self.cosh_effective_mass_errors(dt, fast=fast, period=period)
if self.symmetry == "anti-symmetric":
return self.sinh_effective_mass_errors(dt, fast=fast, period=period)
logging.error("Symmetry is not 'symmetric' nor 'anti-symmetric'")
raise RuntimeError("Could not determine symmetry")
def cosh_effective_mass(self, dt, fast=True, period=None):
if fast: logging.info("cosh emass computed fast method")
T = self.period_check(period)
asv = self.average_sub_vev()
emass = {}
for t in self.times[dt:-dt]:
if t in self.emass_skip_times:
emass[t] = 0.0
continue
try:
guess = (1.0 / float(dt))*math.acosh((asv[t+dt] + asv[t-dt])/(2.0*asv[t]))
if fast:
emass[t] = guess
else:
emass[t] = newton.newton_cosh_for_m(t,t+dt,asv, guess, T)
except ValueError:
logging.debug("invalid argument to acosh, setting to zero")
emass[t] = float('NaN')
except KeyError:
logging.error("index out of range")
except ZeroDivisionError:
logging.error("Div by zero either dt:{} or average value sub vev {}".format(dt,asv[t]))
emass[t] = float('NaN')
return emass
def sinh_effective_mass(self, dt, fast=True, period=None):
if fast: logging.info("sinh emass computed fast method")
T = self.period_check(period)
asv = self.average_sub_vev()
emass = {}
for t in self.times[dt:-dt]:
if t in self.emass_skip_times:
emass[t] = 0.0
continue
try:
guess = (1.0 / float(dt))*math.asinh((asv[t+dt] + asv[t-dt])/(2.0*asv[t]))
if fast:
emass[t] = guess
else:
emass[t] = newton.newton_sinh_for_m(t,t+dt,asv, guess, T)
except ValueError:
logging.debug("invalid argument to asinh, setting to zero")
emass[t] = float('NaN')
except KeyError:
logging.error("index out of range")
except ZeroDivisionError:
logging.error("Div by zero either dt:{} or average value sub vev {}".format(dt,asv[t]))
emass[t] = float('NaN')
return emass
def cosh_effective_amp(self, dt, period, mass):
asv = self.average_sub_vev()
emass = {}
eamp = {}
for t in self.times[dt:-dt]:
if t in self.emass_skip_times:
emass[t] = 0.0
continue
try:
# emass[t] = (1.0 / float(dt))*math.acosh((asv[t+dt] + asv[t-dt])/(2.0*asv[t]))
# eamp[t] = asv[t] / (math.exp(emass[t]*t)+math.exp(emass[t]*(period-t)))
eamp[t] = asv[t] / (math.exp(mass*t)+math.exp(mass*(period-t)))
except ValueError:
logging.debug("invalid argument to acosh, setting to zero")
emass[t] = float('NaN')
eamp[t] = asv[t] * math.exp(emass[t]*t)
except KeyError:
logging.error("index out of range")
except ZeroDivisionError:
logging.error("Div by zero either dt:{} or average value sub vev {}".format(dt,asv[t]))
emass[t] = float('NaN')
eamp[t] = asv[t] * math.exp(emass[t]*t)
return eamp
def cosh_const_effective_mass(self, dt):
asv = self.average_sub_vev()
asvt = {t: asv[t+dt]-asv[t] for t in self.times[:-dt] }
emass = {}
for t in self.times[dt:-(dt+dt)]:
if t in self.emass_skip_times:
emass[t] = 0.0
continue
try:
emass[t] = (1.0 / float(dt))*math.acosh((asvt[t+dt] + asvt[t-dt])/(2.0*asvt[t]))
except ValueError:
logging.debug("invalid argument to acosh, setting to nan")
emass[t] = float('NaN')
except KeyError:
logging.error("index out of range")
except ZeroDivisionError:
logging.error("Div by zero either dt:{} or average value sub vev {}".format(dt,asv[t]))
emass[t] = 0.0
return emass
def effective_mass_errors(self, dt):
jkasv = self.jackknife_average_sub_vev()
jkemass = {}
for cfg in self.configs:
asvc = jkasv[cfg]
emass = {}
for t in self.times[:-dt]:
if t in self.emass_skip_times:
emass[t] = 0.0
continue
try:
emass[t] = (1.0 / float(dt)) * math.log(asvc[t] / asvc[t + dt])
except ValueError:
#logging.debug("invalid argument to log, setting to zero")
emass[t] = 0.0
except ZeroDivisionError:
logging.debug("div by zero, setting to zero")
emass[t] = 0.0
except KeyError:
logging.error("index out of range")
jkemass[cfg] = emass
jkemassobj = configtimeobj.Cfgtimeobj.fromDataDict(jkemass)
effmass_dt = self.effective_mass(dt)
return {t: jackknife.errorbars(effmass_dt[t], jkemassobj.get(time=t))
for t in self.times[:-dt]}
def cosh_effective_mass_errors(self, dt, fast=True, period=None):
if fast: logging.info("cosh emass computed fast method")
period = self.period
T = self.period_check(period)
jkasv = self.jackknife_average_sub_vev()
jkemass = {}
for cfg in self.configs:
asvc = jkasv[cfg]
emass = {}
for t in self.times[dt:-dt]:
if t in self.emass_skip_times:
emass[t] = 0.0
continue
try:
guess = (1.0 / float(dt))*math.acosh((asvc[t+dt] + asvc[t-dt])/(2.0*asvc[t]))
if fast:
emass[t] = guess
else:
emass[t] = newton.newton_cosh_for_m(t,t+dt,asvc, guess,T)
except ValueError:
#logging.debug("invalid argument to log, setting to zero")
emass[t] = 0.0
except ZeroDivisionError:
logging.debug("div by zero, setting to zero")
emass[t] = 0.0
except KeyError:
logging.error("index out of range")
jkemass[cfg] = emass
jkemassobj = configtimeobj.Cfgtimeobj.fromDataDict(jkemass)
effmass_dt = self.cosh_effective_mass(dt, fast=fast, period=period)
return {t: jackknife.errorbars(effmass_dt[t], jkemassobj.get(time=t))
for t in self.times[dt:-dt]}
def sinh_effective_mass_errors(self, dt, fast=True, period=None):
if fast: logging.info("sinh emass computed fast method")
T = self.period_check(period)
jkasv = self.jackknife_average_sub_vev()
jkemass = {}
for cfg in self.configs:
asvc = jkasv[cfg]
emass = {}
for t in self.times[dt:-dt]:
if t in self.emass_skip_times:
emass[t] = 0.0
continue
try:
guess = (1.0 / float(dt))*math.asinh((asvc[t+dt] + asvc[t-dt])/(2.0*asvc[t]))
if fast:
emass[t] = guess
else:
emass[t] = newton.newton_sinh_for_m(t,t+dt,asvc, guess, T)
except ValueError:
#logging.debug("invalid argument to log, setting to zero")
emass[t] = 0.0
except ZeroDivisionError:
logging.debug("div by zero, setting to zero")
emass[t] = 0.0
except KeyError:
logging.error("index out of range")
jkemass[cfg] = emass
jkemassobj = configtimeobj.Cfgtimeobj.fromDataDict(jkemass)
effmass_dt = self.sinh_effective_mass(dt, fast=fast, period=T)
return {t: jackknife.errorbars(effmass_dt[t], jkemassobj.get(time=t))
for t in self.times[dt:-dt]}
def cosh_const_effective_mass_errors(self, dt):
jkasv = self.jackknife_average_sub_vev()
jkemass = {}
for cfg in self.configs:
asvc = jkasv[cfg]
emass = {}
asvct = {t: asvc[t+dt] - asvc[t] for t in self.times[:-dt]}
for t in self.times[dt:-(dt+1)]:
if t in self.emass_skip_times:
emass[t] = 0.0
continue
try:
emass[t] = (1.0 / float(dt))*math.acosh((asvc[t+dt] + asvc[t-dt])/(2.0*asvc[t]))
except ValueError:
#logging.debug("invalid argument to log, setting to zero")
emass[t] = 0.0
except ZeroDivisionError:
logging.debug("div by zero, setting to zero")
emass[t] = 0.0
except KeyError:
logging.error("index out of range")
jkemass[cfg] = emass
jkemassobj = configtimeobj.Cfgtimeobj.fromDataDict(jkemass)
effmass_dt = self.cosh_const_effective_mass(dt)
return {t: jackknife.errorbars(effmass_dt[t], jkemassobj.get(time=t))
for t in self.times[dt:-(dt+dt)]}
def reduce_to_bins(self, n):
reduced = {}
binedvev1 = {}
binedvev2 = {}
for i, b in enumerate(self.bins(n)):
# logging.debug("bin:")
# logging.debug(b)
size = float(len(b))
reduced[i] = {t: math.fsum((self.get(config=c, time=t) for c in b)) / size
for t in self.times}
if self.vev1 is None:
binedvev1 = binnedvev2 = None
else:
binedvev1[i] = math.fsum((self.vev1[c] for c in b)) / size
binedvev2[i] = math.fsum((self.vev2[c] for c in b)) / size
logging.info("Binned from %d, reduced to %d bins", self.numconfigs, len(reduced.keys()))
# Make a new correlator for the bined data
return Correlator.fromDataDicts(reduced, binedvev1, binedvev2)
def bins(self, n):
""" Yield successive n-sized chunks from configs.
"""
if self.numconfigs % n is not 0:
logging.warning("Bin size %d not factor of num configs %d !!!", n, self.numconfigs)
for i in xrange(0, self.numconfigs, n):
yield self.configs[i:i + n]
def writeasv(self, filename, header=None):
logging.info("Writing asv_cor to {}".format(filename))
asv = self.average_sub_vev()
error = self.jackknifed_errors()
with open(filename, 'w') as outfile:
if header:
outfile.write(header)
outfile.write("\n")
for t, a in asv.iteritems():
outfile.write("{!r}, {!r}, {!r}\n".format(t, a, error[t]))
def writeemass(self, filename, dt=3, header=None, periodic=True):
logging.info("Writing emass{} to {}".format(dt,filename))
print self.symmetry
period = self.period_check(None)
self.period = period
if periodic:
emass = self.periodic_effective_mass(dt, fast=False, period=period)
error = self.periodic_effective_mass_errors(dt, fast=False, period=period)
with open(filename, 'w') as outfile:
if header:
outfile.write(header)
outfile.write("\n")
for t, e in emass.iteritems():
outfile.write("{!r}, {!r}, {!r}\n".format(t, e, error[t]))
def subtract(self, t):
logging.info("original times {}-{}".format( min(self.times), max(self.times) ) )
new_times = [time for time in self.times if time > t]
for time in new_times:
logging.info("redefinging correlator data for time {0} as C'({0}) = C({0}) - C({1})".format(time, t))
for cfg in self.configs:
self.data[cfg][time] = self.data[cfg][time] - self.data[cfg][t]
self.asv = None
self.jkasv = None
self.average = None
self.sums = None
self.vevdata = None
self.times = new_times
def period_check(self, period):
if period is None:
if self.period:
return self.period
else:
logging.warning("Period assmed to be number of times")
T = len(self.times)
if self.made_symmetric:
T *= 2
return T
else:
if self.period is not None:
if period != self.period:
logging.error("passed period does not agree with internal period")
raise RuntimeError("passed period does not agree with internal period")
return period
def check_symmetric(self, sigma=1.0, anti=False):
antistring = "anti-" if anti else ""
asymmetry = self.check_symmetric_sigma(anti=anti)
if asymmetry > sigma:
logging.error("correlator is not {}symmetric within {}sigma is {}".format(antistring, sigma,asymmetry))
return False
return True
def check_symmetric_sigma(self, anti=False):
antistring = "anti-" if anti else " "
asv = self.average_sub_vev()
errors = self.jackknifed_errors()
seperations = [t for t in sorted(self.times) if t>0]
max_asymmetry = 0
for tf, tb in zip(seperations, reversed(seperations)):
if anti:
asymmetry = abs(asv[tf] + asv[tb]) / (errors[tf]+errors[tb])
else:
asymmetry = abs(asv[tf] - asv[tb]) / (errors[tf]+errors[tb])
logging.debug("asymmetry in correlator {}symmetry ({},{}): {}".format(antistring, tf,tb,asymmetry))
max_asymmetry = max(asymmetry,max_asymmetry)
logging.info("Max asymmetry in correlator {}symmetry: {}sigma".format(antistring, max_asymmetry))
return max_asymmetry
def make_symmetric(self, sigma=1.0):
if self.made_symmetric:
logging.error("Already made symmetric!!!")
raise RuntimeError("Called make symmetric but correlator Already made symmetric!!!")
corsym = self.determine_symmetry()
if not corsym:
logging.error("can not make symmetric, symmetry type undetermined")
raise RuntimeError("Called make symmetric but correlator unknown symmetry!!!")
anti = False
if (corsym == 'anti-symmetric'):
anti = True
logging.info("making correlator {}symmetric".format("anti-" if anti else " "))
logging.info("original times {}-{}".format( min(self.times), max(self.times) ) )
asv = self.average_sub_vev()
errors = self.jackknifed_errors()
removed_data = []
# new_times = [t for t in self.times if asv[t] - 2.0 * errors[t] > 0.0]
if self.period is not None:
if self.period != len(self.times):
raise RuntimeError("trying to make symmetric but period does not match times!")
else:
self.period = len(self.times)
period = self.period
seperations = list(range(1,period/2+1))
biggest_change = 0.0
for t in self.times:
if t in seperations:
logging.debug("averaging %d %d", t, period-t)
for cfg in self.configs:
prevdata = self.data[cfg][t]
if anti:
newdata = (self.data[cfg][t] - self.data[cfg][period-t])/2.0
else:
newdata = (self.data[cfg][t] + self.data[cfg][period-t])/2.0
biggest_change = max(biggest_change, abs(prevdata - newdata)/prevdata)
self.data[cfg][t] = newdata # (self.data[cfg][t] + self.data[cfg][period-t])/2.0
else:
removed_data.append(t)
for cfg in self.configs:
del self.data[cfg][t]
logging.info("Removed data for t={}".format(repr(removed_data)))
logging.info("Correlator made symetric, largest change was {}".format(biggest_change))
self.times = seperations
self.asv = None
self.jkasv = None
self.average = None
self.sums = None
self.vevdata = None
self.made_symmetric = True
def determine_symmetry(self, recheck=False):
if self.made_symmetric:
logging.error("Already made symmetric!!!")
raise RuntimeError("Called determine symmetry but correlator Already made symmetric!!!")
if self.symmetry:
logging.info("correlator symmetry is {}".format(self.symmetry))
if not recheck:
return self.symmetry
sym = self.check_symmetric_sigma()
asym = self.check_symmetric_sigma(anti=True)
if min(asym,sym) > 6.0:
logging.info("No symmetry found within 6sigma!!")
elif sym < asym:
self.symmetry = "symmetric"
logging.info("correlator found to be symmetric!")
else:
self.symmetry = "anti-symmetric"
logging.info("correlator found to be anti-symmetric!")
return self.symmetry
def multiply_by_value_dict(self, d):
logging.warn("Dividing correlator by {}!!!!!".format(d))
for c in self.configs:
for t in self.times:
self.data[c][t] = self.data[c][t]/d[t]
self.asv = None
self.jkasv = None
self.average = None
self.sums = None
self.vevdata = None