-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDysonSphereConstructionManager.cs
270 lines (238 loc) · 8.49 KB
/
DysonSphereConstructionManager.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
using System;
using System.Collections.Generic;
using System.Threading.Tasks;
namespace DysonSphereConstruction
{
// Material properties for 3D printing
public class ConstructionMaterial
{
public string Name { get; set; }
public double MeltingPoint { get; set; } // Kelvin
public double ThermalConductivity { get; set; } // W/(m·K)
public double Density { get; set; } // kg/m³
public double RadiationResistance { get; set; } // 0-1 scale
public double TensileStrength { get; set; } // GPa
}
// Solar energy collection panel
public class SolarPanel
{
public double Area { get; set; } // m²
public double Efficiency { get; set; } // 0-1 scale
public double Temperature { get; set; } // Kelvin
public double EnergyOutput { get; set; } // Watts
public bool IsOperational { get; set; }
public Position Position { get; set; }
}
// Position in 3D space
public class Position
{
public double X { get; set; }
public double Y { get; set; }
public double Z { get; set; }
public double Radius { get; set; }
public double Theta { get; set; }
public double Phi { get; set; }
public Position(double x, double y, double z)
{
X = x;
Y = y;
Z = z;
UpdateSpherical();
}
private void UpdateSpherical()
{
Radius = Math.Sqrt(X * X + Y * Y + Z * Z);
Theta = Math.Acos(Z / Radius);
Phi = Math.Atan2(Y, X);
}
}
// 3D Printer for space construction
public class SpacePrinter
{
public double PrintSpeed { get; set; } // m³/hour
public double MaterialCapacity { get; set; } // m³
public double EnergyConsumption { get; set; } // kW
public Position CurrentPosition { get; set; }
public bool IsOperational { get; set; }
public Queue<PrintJob> PrintQueue { get; set; }
public SpacePrinter()
{
PrintQueue = new Queue<PrintJob>();
}
public void AddPrintJob(PrintJob job)
{
PrintQueue.Enqueue(job);
}
public async Task ProcessPrintQueue()
{
while (PrintQueue.Count > 0)
{
var job = PrintQueue.Dequeue();
await PrintComponent(job);
}
}
private async Task PrintComponent(PrintJob job)
{
// Calculate print time based on volume and print speed
double printTime = job.Volume / PrintSpeed;
await Task.Delay(TimeSpan.FromHours(printTime));
}
}
// Print job specification
public class PrintJob
{
public string ComponentId { get; set; }
public double Volume { get; set; } // m³
public ConstructionMaterial Material { get; set; }
public Position TargetPosition { get; set; }
public DateTime ScheduledTime { get; set; }
}
// Dyson Sphere construction manager
public class DysonSphereConstructionManager
{
private List<SpacePrinter> Printers { get; set; }
private List<SolarPanel> Panels { get; set; }
private double SphereRadius { get; set; } // meters
private double CompletionPercentage { get; set; }
private double TotalEnergyOutput { get; set; } // Watts
private ConstructionMaterial PrimaryMaterial { get; set; }
public DysonSphereConstructionManager(double radius)
{
SphereRadius = radius;
Printers = new List<SpacePrinter>();
Panels = new List<SolarPanel>();
InitializePrimaryMaterial();
}
private void InitializePrimaryMaterial()
{
PrimaryMaterial = new ConstructionMaterial
{
Name = "Advanced Composite",
MeltingPoint = 2500,
ThermalConductivity = 200,
Density = 1800,
RadiationResistance = 0.95,
TensileStrength = 50
};
}
public void AddPrinter(SpacePrinter printer)
{
Printers.Add(printer);
}
public void OptimizePrinterPositions()
{
foreach (var printer in Printers)
{
CalculateOptimalPrinterPosition(printer);
}
}
private void CalculateOptimalPrinterPosition(SpacePrinter printer)
{
// Implementation of position optimization algorithm
// Based on current construction progress and energy efficiency
}
public async Task ConstructSegment(double theta, double phi)
{
var position = new Position(
SphereRadius * Math.Sin(theta) * Math.Cos(phi),
SphereRadius * Math.Sin(theta) * Math.Sin(phi),
SphereRadius * Math.Cos(theta)
);
var job = new PrintJob
{
ComponentId = Guid.NewGuid().ToString(),
Volume = CalculateSegmentVolume(),
Material = PrimaryMaterial,
TargetPosition = position,
ScheduledTime = DateTime.UtcNow
};
AssignJobToOptimalPrinter(job);
}
private double CalculateSegmentVolume()
{
// Calculate volume based on panel specifications and thickness
return 1000; // Simplified example returning fixed volume
}
private void AssignJobToOptimalPrinter(PrintJob job)
{
// Find printer with shortest queue and closest position
SpacePrinter optimalPrinter = Printers[0];
foreach (var printer in Printers)
{
if (printer.PrintQueue.Count < optimalPrinter.PrintQueue.Count)
{
optimalPrinter = printer;
}
}
optimalPrinter.AddPrintJob(job);
}
public void UpdateConstructionProgress()
{
double totalArea = 4 * Math.PI * Math.Pow(SphereRadius, 2);
double completedArea = Panels.Count * Panels[0].Area;
CompletionPercentage = (completedArea / totalArea) * 100;
TotalEnergyOutput = Panels.Sum(p => p.EnergyOutput);
}
public async Task MonitorConstruction()
{
while (CompletionPercentage < 100)
{
UpdateConstructionProgress();
await ManageTemperature();
await ManageRadiation();
await Task.Delay(TimeSpan.FromHours(1));
}
}
private async Task ManageTemperature()
{
foreach (var panel in Panels)
{
if (panel.Temperature > PrimaryMaterial.MeltingPoint * 0.8)
{
// Implement cooling procedures
await Task.Delay(100); // Simplified cooling simulation
}
}
}
private async Task ManageRadiation()
{
foreach (var panel in Panels)
{
// Monitor and adjust for radiation exposure
await Task.Delay(100); // Simplified radiation management
}
}
}
// Example implementation
class Program
{
static async Task Main()
{
// Initialize construction manager
var dysonManager = new DysonSphereConstructionManager(radius: 1.5e11); // ~1 AU
// Add space printers
for (int i = 0; i < 1000; i++)
{
dysonManager.AddPrinter(new SpacePrinter
{
PrintSpeed = 100,
MaterialCapacity = 1000,
EnergyConsumption = 5000,
IsOperational = true
});
}
// Optimize printer positions
dysonManager.OptimizePrinterPositions();
// Start construction monitoring
await dysonManager.MonitorConstruction();
// Begin construction of segments
for (double phi = 0; phi < 2 * Math.PI; phi += Math.PI / 180)
{
for (double theta = 0; theta < Math.PI; theta += Math.PI / 180)
{
await dysonManager.ConstructSegment(theta, phi);
}
}
}
}
}