-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbaire.tex
885 lines (769 loc) · 36.6 KB
/
baire.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
%\documentclass[11pt,a4paper,draft]{article} % Use this line if this document is a draft
\documentclass[11pt,a4paper]{article} % Use this line if this document will be released
\usepackage{ifdraft}
% Bibliography
\newcommand{\bibfile}{baire.bib} % Name of the BibTeX file.
\newcommand{\universalbib}{/home/zaikunzhang/Bureau/bibliographie/ref.bib}
\ifdraft{\IfFileExists{\universalbib}{\renewcommand{\bibfile}{\universalbib}}{}}{}
\voffset=-1.5cm \hoffset=-1.4cm \textwidth=16cm \textheight=22.0cm
\usepackage{amsmath,amsthm,amssymb,amsfonts}
\usepackage{empheq}
\usepackage{bm}
\usepackage{enumerate}
\usepackage{lscape}
\usepackage{longtable}
\usepackage{color}
\usepackage[bbgreekl]{mathbbol}
\DeclareSymbolFontAlphabet{\mathbbm}{bbold}
\DeclareSymbolFontAlphabet{\mathbb}{AMSb}
\usepackage{bbm}
\usepackage{url}
\usepackage{rotating}
\usepackage{eqlist}
% graph, tikz and pgf
%\usepackage{subfigure}
\usepackage{graphicx}
\usepackage{tikz,tikzscale,pgf,tikz-cd,}
\usetikzlibrary{arrows,arrows.meta,patterns,positioning,decorations.markings,shapes}
\usepackage{pgfplots}
\usepackage{pgfplotstable}
\usepackage[justification=centering]{caption}
\usepgfplotslibrary{fillbetween}
\pgfplotsset{compat=1.11}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{accents}
\usepackage{xspace}
\usepackage{silence}
\WarningFilter{latex}{Writing or overwriting file} % Mute the warning about 'writing/overwriting file'
\WarningFilter{latex}{Writing file} % Mute the warning about 'writing/overwriting file'
\WarningFilter{latex}{Tab has} % Mute the warning about 'Tab has been converted to Blank Space'
\usepackage[normalem]{ulem}
\usepackage[toc,page]{appendix}
\renewcommand{\appendixpagename}{\Large{Appendix}}
\renewcommand{\appendixname}{Appendix}
\renewcommand{\appendixtocname}{Appendix}
%\usepackage{sectsty}
\usepackage{multirow,booktabs}
\usepackage{enumitem}
\usepackage{upgreek}
\setlist[itemize]{leftmargin=*}
%\usepackage[nobottomtitles*]{titlesec} % No section title at the bottom of pages
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\definecolor{darkblue}{rgb}{0,0.1,0.5}
\definecolor{darkgreen}{rgb}{0,0.5,0.1}
\usepackage{hyperref}
\hypersetup{ colorlinks,%
linkcolor=darkblue,%
anchorcolor=darkblue,
citecolor=darkblue,%
urlcolor=darkblue}
\newcommand{\red}[1]{\textcolor{red}{#1}}
\newcommand{\blue}[1]{\textcolor{blue}{#1}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\usepackage{refcheck} % Check unused labels
\usepackage[section]{algorithm}
\usepackage{algpseudocode,algorithmicx}
\newcommand{\INPUT}{\textbf{Input}}
\newcommand{\FOR}{\textbf{For}~}
\algrenewcommand\algorithmicrequire{\textbf{Input:}}
\algrenewcommand\algorithmicensure{\textbf{Output:}}
\algrenewcommand\alglinenumber[1]{\normalsize #1.}
\newcommand*\Let[2]{\State #1 $=$ #2}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{acknowledgement}{Acknowledgement}[section]
\newtheorem{alg}{Algorithm}[section]
\newtheorem{axiom}{Axiom}[section]
\newtheorem{case}{Case}[section]
\newtheorem{claim}{Claim}[section]
\newtheorem{conclusion}{Conclusion}[section]
\newtheorem{condition}{Condition}[section]
\newtheorem{conjecture}{Conjecture}[section]
\newtheorem{corollary}{Corollary}[section]
\newtheorem{criterion}{Criterion}[section]
\newtheorem{exercise}{Exercise}[section]
\newtheorem{lemma}{Lemma}[section]
\newtheorem{notation}{Notation}[section]
\newtheorem{problem}{Problem}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{remark}{Remark}[section]
\newtheorem{solution}{Solution}[section]
\newtheorem{assumption}{Assumption}[section]
\newtheorem{summary}{Summary}[section]
\newtheorem{note}{Note}[section]
\newtheorem{doubt}{Doubt}[section]
\newtheorem{properties}{Properties}[section]
\newtheorem{example}{Example}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
% Prevent footnote from running to the next page
\interfootnotelinepenalty=10000
% No line break in inline math
\interdisplaylinepenalty=10000
\relpenalty=10000
\binoppenalty=10000
% No widow or orphan lines
%\clubpenalty = 10000
%\widowpenalty = 10000
%\displaywidowpenalty = 10000
\usepackage{xpatch}
\xpatchcmd{\proof}{\itshape}{\normalfont\proofnamefont}{}{}
\newcommand{\proofnamefont}{\bfseries}
\usepackage{nccmath,relsize}
\DeclareMathOperator*{\mcap}{\mathsmaller{\bigcap}}
\DeclareMathOperator*{\mcup}{\mathsmaller{\bigcup}}
%\renewcommand{\cap}{\mathsmaller{\bigcap}}
%\renewcommand{\cap}{\mcap}
\setlength{\unitlength}{1mm}
\def\real{\mathbb{R}}
\def\SS{\mathbb{S}}
\def\ZZ{\mathbb{Z}}
\def\NN{\mathbb{N}}
\def\KK{\mathbb{K}}
\newcommand{\sss}[1]{{\scriptscriptstyle{#1}}}
\newcommand{\sups}[1]{{#1}}
\renewcommand{\top}{{\scriptstyle{\mathsf{T}}}}
\DeclareMathOperator{\sort}{sort}
\DeclareMathOperator*{\argmax}{argmax}
\DeclareMathOperator*{\argmin}{argmin}
\DeclareMathOperator{\Span}{span}
\DeclareMathOperator{\med}{med}
\newcommand{\co}{{\mathrm{c}}}
\newcommand{\rank}{\mathrm{rank}}
\newcommand{\range}{\mathrm{range}}
\newcommand{\ind}[2]{\operatorname{\mathbbm{1}}\;\!\!\!\big(#2\in#1\big)}
\newcommand{\diag}{\operatorname*{diag}}
\newcommand{\Diag}{\operatorname*{Diag}}
\newcommand{\im}{\operatorname{im}}
\newcommand{\diam}{\operatorname{diam}}
\newcommand{\dist}{\operatorname{dist}}
\newcommand{\Pred}{\mathrm{Pred}}
\newcommand{\cs}{\text{c}}
\newcommand{\hp}{\circ}
\newcommand{\card}{{\rm card}}
\newcommand{\fr}{\operatorname{fr}}
\newcommand{\sg}[1]{\bf { #1 }}
\newcommand{\ceil}[1]{ {\lceil{#1}\rceil} }
\newcommand{\floor}[1]{ {\lfloor{#1}\rfloor} }
%\renewcommand{\emph}{\textbf}
%\newcommand{\ones}{\mathbbm{1}}
\newcommand{\ones}{1}
\newcommand{\cc}{\sss{\textnormal{C}}}
\newcommand{\dec}{\sss{\textnormal{D}}}
\newcommand{\cauchy}{\sss{\textnormal{C}}}
\newcommand{\scauchy}{\sss{\textnormal{S}}}
\newcommand{\etc}{{etc.}}
\newcommand{\ie}{{i.e.}}
\newcommand{\eg}{{e.g.}}
\newcommand{\etal}{{et al.}}
\newcommand{\st}{\textnormal{s.t.}}
\newcommand{\me}{\mathrm{e}}
\newcommand{\md}{\mathrm{d}}
\newcommand{\lev}{\mathrm{lev}}
\newcommand{\bA}{\mathbf{A}}
\newcommand{\bx}{\mathbf{u}}
%\newcommand{\bb}{\mathbf{f}}
\newcommand{\bb}{\mathbf{r}}
\newcommand{\nov}{n_{\textnormal{o}}}
\newcommand{\MATLAB}{\textsc{Matlab}\xspace}
\newcommand{\rpss}{{SS}}
\newcommand{\rdfs}{{DF}}
\newcommand{\pfs}{{FS}}
\newcommand{\cg}{{CG}}
\newcommand{\hem}{{HEM}}
\newcommand{\prblm}{\texttt}
\DeclareMathAlphabet{\mathsfit}{T1}{\sfdefault}{\mddefault}{\sldefault}
\SetMathAlphabet{\mathsfit}{bold}{T1}{\sfdefault}{\bfdefault}{\sldefault}
\newcommand{\prbb}{\mathsfit{p}}
\newcommand{\pp}{\mathsf{p}}
\newcommand{\qq}{\mathsf{q}}
\newcommand{\ttt}{\mathsfit{t}}
\newcommand{\tol}{\varepsilon}
\newcommand{\bt}{\mathbf{t}}
\newcommand{\br}{\mathbf{r}}
\newcommand{\dd}{\mathbf{d}}
\newcommand{\ii}{\mathbf{i}}
\newcommand{\jj}{\mathbf{j}}
\newcommand{\xx}{\mathbf{x}}
\renewcommand{\pp}{\mathbf{p}}
\renewcommand{\ggg}{\mathbf{g}}
\newcommand{\GG}{\mathbf{G}}
\renewcommand{\Pr}{\mathbb{P}}
\newcommand{\iid}{\text{i.i.d.}}
\newcommand{\integer}{\textrm{I}}
\newcommand{\octave}{\mbox{GNU Octave}\xspace}
\newcommand{\gradp}{\nabla_{\!\sss{P_k}}}
% mathlcal font
\DeclareFontFamily{U}{dutchcal}{\skewchar\font=45 }
\DeclareFontShape{U}{dutchcal}{m}{n}{<-> s*[1.0] dutchcal-r}{}
\DeclareFontShape{U}{dutchcal}{b}{n}{<-> s*[1.0] dutchcal-b}{}
\DeclareMathAlphabet{\mathlcal}{U}{dutchcal}{m}{n}
\SetMathAlphabet{\mathlcal}{bold}{U}{dutchcal}{b}{n}
% mathscr font (supporting lowercase letters)
%\usepackage[scr=dutchcal]{mathalfa}
%\usepackage[scr=esstix]{mathalfa}
%\usepackage[scr=boondox]{mathalfa}
%\usepackage[scr=boondoxo]{mathalfa}
\usepackage[scr=boondoxupr]{mathalfa}
%\newcommand{\model}{\mathscr{h}}
\newcommand{\model}{\mathbf{h}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\TT}{\mathcal{T}}
\newcommand{\BB}{\mathcal{B}}
\DeclareMathOperator{\inter}{int}
\DeclareMathOperator{\cl}{cl}
\DeclareMathOperator{\vol}{vol}
\newcommand{\Set}[1]{\mathcal{#1}}
\DeclareMathAlphabet{\mathpzc}{OT1}{pzc}{m}{it} % The mathpzc font
\newcommand{\slv}{\mathpzc}
% mathpzc looks great, but it stops working on 19 Feb 2020 for no reason.
%\newcommand{\slv}{\mathscr}
\newcommand{\software}{\texttt}
\DeclareMathOperator{\eff}{\mathsf{e}\;\!}
\DeclareMathOperator{\Eff}{\mathsf{E}\;\!}
\newcommand{\out}{{\text{out}}}
\numberwithin{equation}{section}
\setcounter{tocdepth}{2}
\DeclareMathOperator{\comp}{C}
\DeclareMathOperator{\sign}{sign}
\newcommand{\REPHRASE}[1]{{\color{blue}{#1}}}
\newcommand{\TYPO}[1]{{\color{orange}{#1}}}
\newcommand{\MISTAKE}[1]{{\color{violet}{#1}}}
\newcommand{\REVISION}[1]{{\color{blue}{#1}}}
\newcommand{\REVISIONred}[1]{{\color{red}{#1}}}
%\newcommand{\COMMENT}[1]{\textcolor{darkgreen}{(#1)}}
%\newcommand{\REVISION}[1]{#1}
%\newcommand{\REVISIONred}[1]{#1}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\title{Notes on Baire's Category Theory}
\date{November 14, 2020 (revised on \today)}
\author{
Z. Zhang
\thanks{
Department of Applied Mathematics, The Hong Kong Polytechnic
University, Hong Kong, China ({\tt zaikun.zhang@polyu.edu.hk}).
}
}
\begin{document}
\maketitle
\section{Basics}
\begin{definition}
\label{def:intcl}
Let~$X$ be a topological space and~$S$ be a set in~$X$.
\begin{enumerate}
\item The interior of~$S$ is defined as~$\inter(S) = \bigcup\{U \mathrel{:} U\subset S \text{ and } U \text{ is open in } X\}$.
\item The closure of~$S$ is defined as~$\cl(S) = \bigcap\{G \mathrel{:} G\supset S \text{ and } G \text{ is closed in } X\}$.
\end{enumerate}
\end{definition}
\begin{proposition}
\label{prop:intcl}
Let~$A$ and~$B$ be two sets in a topological space~$X$.
\begin{enumerate}
\item Duality between interior and closure: $\inter(A) = \cl(A^\co)^\co$, $\cl(A)=\inter(A^\co)^\co$.
\item For any~$x\in X$, $x\in \inter(A)$ if and only if there exists an open set~$U$ such that~$x\in U \subset A$.
\item For any~$x\in X$, $x\in \cl(A)$ if and only if $U\cap A \neq \emptyset$ for any open set~$U$ such that~$x\in U$.
\item $\inter(A\cap B) = \inter(A)\cap \inter(B)$.
%, $\inter(A\cup B)\supset \inter(A)\cup \inter(B)$.
%; if~$A$ is closed and~$\inter(B) = \emptyset$, then~$\inter(A\cup B) = \inter(A)$.
\item $\cl(A\cup B) = \cl(A)\cup \cl(B)$.
%, $\cl(A\cap B) \subset \cl(A)\cap \cl(B)$.
%; if~$A$ is open and~$\cl(B) = X$, then~$\cl(A\cap B) = \cl(A)$.
\end{enumerate}
\end{proposition}
\begin{proposition}
\label{prop:subintcl}
Let~$X$ be a topological space and~$Y$ be its subspace.
\begin{enumerate}
\item For any~$S\subset Y$, $\inter_Y(S) \supset \inter_X(S)$;
if~$Y$ is open in~$X$, then $\inter_Y(S)=\inter_X(S)$.
\item For any~$S\subset Y$, $\cl_Y(S) = \cl_X(S) \cap Y$.
\end{enumerate}
\end{proposition}
In Proposition~\ref{prop:subintcl}, we use a subscript to indicate the topological space which the
interior or closure is defined with respect to. We will always do this if the context does not
suffice to avoid confusion.
\begin{proof}
1. $\inter_X(S)$ is open in~$X$ and~$\inter_X(S)\subset S\subset Y$. Thus~$\inter_X(S)$ is an open
subset of~$S$ in~$Y$, leading to~$\inter_X(S)\subset \inter_Y(S)$. If~$Y$ is open,
then~$\inter_Y(S)$ is an open subset of~$S$ in~$X$, implying that~$\inter_Y(S)\subset
\inter_X(S)$ and hence~$\inter_Y(S) = \inter_X(S)$.
2. %First,~$\cl_X(S)\cap Y$ is a closed set in~$Y$ and it contains~$S$.
Since $\cl_Y(S)$ is closed in~$Y$, there exists a closed set~$G$ in~$X$ such
that~$\cl_Y(S)= G\cap Y$. Thus~$S\subset G$, implying that~$\cl_X(S) \subset G$.
Therefore,~$\cl_X(S)\cap Y \subset G\cap Y = \cl_Y(S)$. On the other hand,~$\cl_X(S)\cap Y$ is
a closed set in~$Y$ and it contains~$S$, implying that~$\cl_X(S)\cap Y \supset \cl_Y(S)$.
Hence~$\cl_X(S)\cap Y = \cl_Y(S)$.
\end{proof}
\begin{definition}
\label{def:dense}
%Let~$A$ and~$B$ be two sets in a topological space~$X$ such that~$A\subset B$. If~$\cl(A) \supset B$, then~$A$ is said to be dense in~$B$.
Let~$A$ and~$B$ be two sets in a topological space~$X$
\begin{enumerate}
\item If~$\cl(A) = X$ (equivalently, $\inter(A^\co) = \emptyset$), then~$A$ is said to be dense in~$X$.
\item If~$A\subset B$ and~$A$ is dense in~$B$ with respect to the subspace topology on $B$,
then we will simply say that~$A$ is dense in~$B$.
\end{enumerate}
\end{definition}
\begin{proposition}
\label{prop:densein}
Let~$A$ and~$B$ be two sets in a topological space~$X$ such that~$A\subset B$. Then~$A$ is dense
in~$B$ if and only if~$\cl(A) \supset B$.
\end{proposition}
\begin{proof}
$A$ is dense in~$B$ $\Leftrightarrow $ $\cl_B(A) = B$ $\Leftrightarrow$ $\cl(A)\cap B = B$
$\Leftrightarrow$ $\cl(A) \supset B$.
\end{proof}
\begin{proposition}
\label{prop:dense}
Let~$A$ and~$B$ be two sets in a topological space~$X$.
\begin{enumerate}
\item $A\subset \cl(B)$ if and only if~$\inter(B^\co ) \subset \inter(A^\co)$.
\item \label{it:abu} $A \subset \cl(B)$ if and only if~$U\cap B \neq \emptyset$ for any open
set~$U$ such that~$U \cap A \neq \emptyset$
%(\ie, any neighborhood of any point in~$A$ has a nonempty intersection with~$B$).
\item \label{it:open} If~$A$ is open, then $A\subset \cl(B)$ if and only if $U\cap B \neq \emptyset$ for any
nonempty open set~$U\subset A$.
\item \label{it:abuu} If~$A\subset \cl(B)$, then $A\cap U \subset \cl(B\cap U)$ for any open set~$U$.
%\item If~$A$ is dense in~$B$, then~$A\cap U$ is dense in~$B\cap U$ for any open set~$U$.
\item \label{it:dense}If $A$ is open and~$A\subset \cl(B)$, then~$A\cap B$ is dense in~$A$.
% , \ie, $A \subset \cl(A\cap B)$.
\item \label{it:intcl} $\inter(\cl(A))\cap A$ is dense in~$\inter(\cl(A))$.
\end{enumerate}
\end{proposition}
\begin{proof}
1. $A\subset \cl(B)$ $\Leftrightarrow$ $(\cl(B))^\co \subset A^\co $
$\Leftrightarrow$ $\inter(B^\co) \subset A^\co$
$\Leftrightarrow$ $\inter(B^\co) \subset \inter(A^\co)$.
2. Suppose that~$A\subset \cl(B)$. For any open set~$U$ such that~$U\cap A\neq \emptyset$, we
have~$U\cap \cl(B)\neq \emptyset$, and hence~$U\cap B\neq \emptyset$.
If~$A\not\subset \cl(B)$, then~$U=(\cl(B))^\co$ is an open set such that~$U\cap A \neq \emptyset$
while~$U\cap B = \emptyset$.
3. Suppose that~$A\subset \cl(B)$. For any nonempty open set~$U\subset A$, we have~$U\cap A = U\neq \emptyset$,
and hence~$U\cap B\neq \emptyset$ according to~\ref{it:abu}.
If~$A\not\subset \cl(B)$, then~$U=A\cap (\cl(B))^\co$ is a nonempty open set such that~$U\subset A$
while~$U\cap B = \emptyset$.
4. Since~$A \subset \cl(B)$, for any open set~$V$ such that~$A\cap U\cap V\neq \emptyset$, we have
according to~\ref{it:open} that~$B\cap U\cap V\neq \emptyset$. This implies~$A\cap U \subset \cl(B\cap U)$
according to~\ref{it:open}.
5. According to~\ref{it:abuu}, $A = A\cap A \subset \cl(A\cap B)$ since~$A$ is open.
6. Since~$\inter(\cl(A))$ is open, and~$\inter(\cl(A)) \subset \cl(A)$, we know from 5 that
$\inter(\cl(A))\cap A$ is dense in~$\inter(\cl(A))$.
\end{proof}
\section{Cantor's theorem and its consequences}
\begin{theorem}[Cantor's theorem]
\label{th:cantor}
Let~$X$ be a topological space, and~$\{C_n\}$ be a sequence of
nonempty closed sets such that~$C_{n+1}\subset C_n$ for each~$n\ge 1$.
\begin{enumerate}
\item If~$X$ is complete metric space and~$\diam(C_n)\to 0$, then~$\bigcap_{n=1}^\infty C_n$ is
a singleton.
\item If each~$C_n$ is compact, then~$\bigcap_{n=1}^\infty C_n$ is nonempty.
\end{enumerate}
\end{theorem}
\begin{proof}
1.~For each~$n\ge 1$, pick a point~$x_n\in C_n$. For any integers~$m$ and~$n$ such that~$m\ge
n \ge 1$, we have~$\{x_m,x_n\}\subset C_m \bigcup C_n = C_n$ and hence
\[
\dist(x_m,x_n) \;\le\; \diam(C_n) \;\to\; 0 \quad \text{as }~ n\to\infty.
\]
Thus the sequence~$\{x_n\}$ is Cauchy, converging to a point~$x\in X$ due to the
completeness of~$X$. For each~$n\ge 1$, since~$C_n$ is closed
and~$\{x_k\}_{k\ge n}\subset \bigcup_{k\ge n} X_k = X_n$, we know
that~$x\in C_n$. Thus~$x\in \bigcap_{n=1}^\infty C_n$. Noting that~$\diam(\bigcap_{n=1}
^\infty C_n) \le\diam(C_n) \to 0$, we have~$\bigcap_{n=1}^\infty C_n = \{x\}$.
2.~For each~$n\ge 1$, pick a point~$x_n\in C_n$. Then~$\{x_n\} \subset X_1$. Due to the
compactness of~$X_1$, there exists a subsequence~$\{x_{i_k}\}$ of~$\{x_n\}$ that converges to a
point~$x\in X$. For each~$n\ge 1$, since~$C_n$ is closed and~$\{x_{i_k}\}_{k\ge n}\subset C_{i_n}
\subset C_n$, we know that~$x\in C_n$ and hence~$x\in \bigcap_{n=1}^\infty C_n$.
Thus~$\bigcap_{n=1}^\infty C_n$ is nonempty.
\end{proof}
\begin{theorem}[{\cite[Theorems~1.4.5--1.4.6]{Zalinescu_2002}}]
\label{th:intclcm}
Let~$X$ be a complete metric space and $\{S_n\}_{n=1}^\infty$ be a sequence of sets in~$X$.
\begin{enumerate}
\item\label{it:intcm} If each~$S_n$ is open, then $\cl(\bigcap_{n=1}^\infty S_n)$ and~$\bigcap_{n=1}^\infty \cl(S_n)$ have the same interior.
% that is $\inter (\cl(\bigcap_{n=1}^\infty S_n)) = \inter(\bigcap_{n=1}^\infty \cl(S_n))$.
\item If each~$S_n$ is closed, then $\inter(\bigcup_{n=1}^\infty S_n)$ and~$\bigcup_{n=1}^\infty \inter(S_n)$ have the same closure.
% that is $\cl (\inter(\bigcup_{n=1}^\infty S_n)) = \cl(\bigcup_{n=1}^\infty \inter(S_n))$.
\end{enumerate}
\end{theorem}
\begin{proof}
Due to the duality between closure and interior, we only prove~\ref{it:intcm}, for which it suffices to show that
$\inter(\bigcap_{n=1}^\infty \cl(S_n))\subset \cl(\bigcap_{n=1}^\infty S_n)$.
By item~\ref{it:open} of Proposition~\ref{prop:dense}, we only need to prove for a given
nonempty open set~$U \subset \bigcap_{n=1}^\infty \cl(S_n)$ that%
\begin{equation}
\label{eq:usnonempty}
U\mcap\left(\mcap_{n=1}^\infty S_n\right) \neq \emptyset.
\end{equation}
To this end, we will define a sequence of closed balls~$\{B_n\}_{n=0}^\infty$~such~that%
\begin{equation}
\label{eq:nest}
0< \diam(B_n)< 2^{-n},
\quad
B_{n+1} \subset B_{n} \subset U\mcap\left(\mcap_{k=1}^n S_k\right)
\quad \text{ for each } \quad n \ge 0,
\end{equation}
where $\bigcap_{k=1}^0 S_k=X$.
We will obtain~\eqref{eq:usnonempty} once this is done, as
Cantor's theorem will yield
\begin{equation}
\label{eq:nestnonempty}
\emptyset \;\neq \;\mcap_{n=1}^\infty B_n \;\subset\; U\mcap \left(\mcap_{n=1}^\infty
S_n\right).
\end{equation}
We define $\{B_n\}$ inductively.
As~$U$ is a nonempty open set, we can take a closed ball~$B_0\subset U$
such that~$0<\diam(B_0)< 1$.
Assume that the closed ball~$B_n$ is already defined for an~$n\ge 0$
so that~$0<\diam(B_n)< 2^{-n}$ and~$B_n\subset U\cap(\bigcap_{k=1}^n S_k)$.
Since~$U\subset\cl(S_{n+1})$ and~$\inter(B_n)$ is a nonempty open subset of~$U$,
we have that~$\inter(B_n) \cap S_{n+1} \neq \emptyset$. Noting that~$\inter(B_n)\cap S_{n+1}$ is open, we
can take a closed ball~$B_{n+1}\subset \inter(B_n)\cap S_{n+1}$ such that~$0<\diam(B_{n+1})< 2^{-(n+1)}$.
It is easy to see that~$B_{n+1}\subset B_n$ and
%$B_{n+1}\subset B_{n}\cap S_{n+1} \subset [U\cap (\bigcap_{k=1}^n S_{k})]\cap S_{n+1} = U\cap(\bigcap_{k=1}^{n+1} S_k)$.
$B_{n+1}\subset B_{n}\cap S_{n+1} \subset U\cap(\bigcap_{k=1}^{n+1} S_k)$.
This finishes the induction and completes the proof.
\end{proof}
\begin{theorem}
\label{th:intcllch} Theorem~\ref{th:intclcm} still holds if~$X$ is a locally compact Hausdorff
space.
\end{theorem}
\begin{proof}
The proof duplicates that of Theorem~\ref{th:intclcm}, except that~$\{B_n\}$ is now a sequence of
compact sets with nonempty interior such that
$B_{n+1} \subset B_n \subset U \cap (\bigcap_{k=1}^n S_k)$, the existence of which can be
established by the local compactness of~$X$. Since~$X$ is a Hausdorff space, each~$B_n$ is closed,
and hence~$\bigcap_{n=1}^\infty B_n$ is nonempty by Cantor's theorem.
\end{proof}
\begin{corollary}
\label{coro:intcl}
Let~$X$ be a complete metric space or a locally compact Hausdorff space,
and~$\{S_n\}_{n=1}^\infty$ be a sequence of sets in~$X$.
\begin{enumerate}
\item\label{it:dense} If each~$S_n$ is open and dense, then~$\bigcap_{n=1}^\infty S_n$ is dense.
\item\label{it:emptyint} If each~$S_n$ is closed and has empty interior, then~$\bigcup_{n=1}^\infty S_n$ has empty interior.
\end{enumerate}
\end{corollary}
\begin{proof}
\ref{it:dense}.~According to Theorems~\ref{th:intclcm} and~\ref{th:intcllch},
$\cl(\bigcap_{n=1}^\infty S_n) \supset \inter( \bigcap_{n=1}^\infty \cl(S_n)) = X$.
\ref{it:emptyint}.~According to Theorems~\ref{th:intclcm} and~\ref{th:intcllch},
$\inter(\bigcup_{n=1}^\infty S_n) \subset \cl(\bigcap_{n=1}^\infty \inter(S_n)) = \emptyset$.
Alternatively, we can use item~\ref{it:dense} and the duality between interior and closure.
\end{proof}
\section{Baire's category theorem}
\begin{definition}
Let~$X$ be a topological space.
\begin{enumerate}
\item A set in~$X$ is said to be rare (or \emph{nowhere dense}) if its closure has empty interior.
\item A set in~$X$ is said to be meager if it is a countable union of rare sets.
\item The complement of a meager set is called a comeager (or \emph{residual}) set.
\item A meager set is also said to be of the first category; other sets are
of the second category.
\end{enumerate}
\end{definition}
\begin{proposition}
Rare sets, subsets of meager sets, and countable unions of meager sets are all meager sets.
\end{proposition}
\begin{example}
Let~$\{r_n\}_{n=1}^\infty$ be an enumeration of all the rational numbers.
Define
\begin{equation*}
S = \bigcap_{m=1}^\infty \bigcup_{n=1}^\infty \left(r_n - \frac{1}{m\,2^n},\;
r_n+\frac{1}{m\,2^n}\right).
\end{equation*}
It is easy to check that~$S$ is comeager in~$\real$. It is dense in~$\real$ but with zero Lebesgue measure.
\end{example}
\begin{definition}
A topological space~$X$ is called a Baire space if every meager set in~$X$ has empty interior.
\end{definition}
\begin{proposition}
\label{prop:equiv}
Let~$X$ be a topological space. The following statements are equivalent.
\begin{enumerate}
\item $X$ is a Baire space.
\item Any comeager set in~$X$ is dense.
\item Any nonempty open set in~$X$ is not meager.
\item Any countable intersection of dense open sets in~$X$ is still dense.
\item Any countable union of rare closed sets in~$X$ has empty interior.
\end{enumerate}
\end{proposition}
\begin{proof}
1 $\Rightarrow$ 2.
Let~$S$ be a comeager set in~$X$. Then~$S^\co$ is a meager
set in~$X$. Thus~$S$ has empty interior, which implies that~$S$ is dense in~$X$.
2 $\Rightarrow$ 3.
Let~$U$ be an open set in~$X$.
If~$U$ is meager, then~$U^\co$ is dense in~$X$. Thus~$U=\!\inter(U) \!= \emptyset$.
3 $\Rightarrow$ 4.
Let~$\{U_n\}$ be a sequence of dense open sets in~$X$. Then~$(\bigcap_{n=1}^\infty U_n)^\co$ is
meager. Its interior is an open meager set in~$X$, and hence empty. Thus~$\bigcap_{n=1}^\infty
U_n$ is dense.
4 $\Rightarrow$ 5.
Let~$\{C_n\}$ be a sequence of rare closed sets in~$X$. Then~$\{C_n^\co\}$ is a seqeunce
of dense open sets. Thus~$\bigcap_{n=1}^\infty C_n^\co$ is dense in~$X$. Taking the complement, we
know that~$\bigcup_{n=1}^\infty C_n$ has empty interior.
5 $\Rightarrow$ 1.
Let~$S$ be a meager set in~$X$. Then there exists a sequence of rare sets~$\{S_n\}$ such that
$S=\bigcup_{n=1}^\infty S_n$. Thus~$S\subset \bigcup_{n=1}^\infty \cl(S_n)$, the latter of which has
empty interior because~$\{\cl(S_n)\}$ is a sequence of rare closed sets.
Hence~$S$ has empty interior.
\end{proof}
\begin{proposition}
\label{prop:intclr}
Let~$X$ be a topological space and~$S$ be a set in~$X$. Then~$S$ is rare in~$X$ if and only
if~$\inter(\cl(S)) \cap S = \emptyset$.
\end{proposition}
\begin{proof}
By item~\ref{it:intcl} of Proposition~\ref{prop:dense}, $\inter(\cl(S)) \cap S$ is dense
in~$\inter(\cl(S))$. Thus $\inter(\cl(S)) = \emptyset$ if and only if $\inter(\cl(S)) \cap S = \emptyset$.
\end{proof}
\begin{lemma}
\label{lem:openb}
Let~$X$ be a topological space, $Y$ be its open subspace, and~$S$ be a subset of~$Y$.
\begin{enumerate}
\item \label{it:rare}$S$ is rare in $X$ if and only if~$S$ is rare in~$Y$.
\item $S$ is meager in $X$ if and only if~$S$ is meager in~$Y$.
\end{enumerate}
\end{lemma}
\begin{proof}
1. Since~$Y$ is open in~$X$, we have
\begin{equation}
\label{eq:subrare}
\inter_Y(\cl_Y(S)) = \inter_X(\cl_Y(S)) \;=\; \inter_X(\cl_X(S)\cap Y) = \inter_X(\cl_X(S))\cap Y.
\end{equation}
If~$S$ is rare in~$X$, then~$\inter_X(\cl_X(S))=\emptyset$, and hence~$\inter_Y(\cl_Y(S))
= \emptyset$ by~\eqref{eq:subrare},
implying that~$S$ is rare in~$Y$.
If~$S$ is rare in~$Y$, then~\eqref{eq:subrare} leads
to~$\inter_{X}(\cl_X(S))\cap Y = \emptyset$, which implies~$\inter_X(\cl_X(S))\cap
S = \emptyset$, ensuring that~$S$ is rare in~$X$ by Proposition~\ref{prop:intclr}.
2. If~$S$ is meager in~$X$, then~$S= \bigcup_{n=1}^\infty S_n$ with a sequence of rare
sets~$\{S_n\}$ in~$X$. Each~$S_n$ is a subset of~$S$, and hence of~$Y$, and it is rare
in~$Y$ according to~\ref{it:rare}. Thus~$S$ is meager in~$Y$. If~$S$ is meager in~$Y$, then~$S
= \bigcup_{n=1}^\infty S_n$ with a sequence of rare sets~$\{S_n\}$ in~$Y$. Each~$S_n$ is rare in
in~$X$ according to~\ref{it:rare}. Thus~$S$ is meager in~$X$.
\end{proof}
\begin{theorem}
\label{th:intcl}
Let~$X$ be a topological space. The following statements are equivalent.
\begin{enumerate}
\item $X$ is a Baire space.
\item Any open subspace of~$X$ is a Baire space.
\item For any sequence~$\{S_n\}$ of open sets in~$X$, $\cl(\bigcap_{n=1}^\infty S_n)$ and
$\bigcap_{n=1}^\infty \cl(S_n)$ have the same interior.
\item For any sequence~$\{S_n\}$ of closed sets in~$X$, $\inter(\bigcup_{n=1}^\infty S_n)$ and
$\bigcup_{n=1}^\infty \inter(S_n)$ have the same closure.
\end{enumerate}
\end{theorem}
\begin{proof}
1~$\Rightarrow$~2. Let~$Y$ be an open subspace of~$X$, and~$S$ be a meager set in~$Y$.
Then~$S$ is meager in~$X$ by Lemma~\ref{lem:openb}. Since~$X$ is a Baire space, we
have~$\inter_X(S)=\emptyset$, which implies~$\inter_Y(S)=\emptyset$ as~$Y$ is open in~$X$.
Hence~$Y$ is a Baire space.
2~$\Rightarrow$~3. It suffices to prove that~$\inter(\bigcap_{n=1}^\infty \cl(S_n))\subset\cl(\bigcap_{n=1}^\infty S_n)$.
Let~$Y=\inter(\bigcap_{n=1}^\infty \cl(S_n))$. Then~$Y$ is an open subspace of~$X$ and hence a Baire space.
Define $T_n = S_n\cap Y$ for each~$n\ge 1$. Then each~$T_n$ is open in~$Y$. Since~$Y$ is open
in~$X$ and~$Y\subset \cl_X(S_n)$, we know from item~\ref{it:dense} of Proposition~\ref{prop:dense}
that~$T_n$ is dense in~$Y$. Hence~$\bigcap_{n=1}^\infty T_n$
is dense in~$Y$. Therefore, $Y \subset \cl_X(\bigcap_{n=1}^\infty T_n) \subset
\cl_X(\bigcap_{n=1}^\infty S_n)$ as desired.
3~$\Rightarrow$~4. Obvious by the duality between interior and closure.
4~$\Rightarrow$~1.~Let~$\{S_n\}$ be a sequence of closed sets in~$X$ with empty interior. Then we
have
$\cl(\inter(\bigcup_{n=1}^\infty S_n)) = \cl(\bigcup_{n=1}^\infty \inter(S_n)) = \emptyset$.
Thus~$\inter(\bigcup_{n=1}^\infty S_n) = \emptyset$. Hence~$X$ is a Baire space.
\end{proof}
Theorems~\ref{th:intclcm}, \ref{th:intcllch}, and~\ref{th:intcl} lead us to Baire's Category
Theorem. It can also be obtained by combining Corollary~\ref{coro:intcl} and Proposition~\ref{prop:equiv}.
\begin{theorem}[Baire's Category Theorem, {\cite[Theorem~48.2]{Munkres_2000}}]
\label{th:Baire}
Complete metric spaces and locally compact Hausdorff spaces are Baire spaces.
\end{theorem}
\section{Baire's category in topological vector spaces}
\begin{definition}
A topological vector space $X$ is a vector space over a topological field $\KK$ (most often the
real or complex numbers with their standard topologies) that is endowed with a topology such that
the vector addition $(x,y)\mapsto x+y$ and scalar multiplication $(\lambda, x) \mapsto \lambda x$ are continuous functions, where the domains of these
functions are endowed with product topologies.
\end{definition}
\begin{proposition}
Suppose that~$X$ be a topological vector space and~$U$ is a neighborhood of~$0$.
Then~$X=\bigcup_{n=1}^\infty (nU)$.
\end{proposition}
\begin{proof}
For any~$x\in X$, $n^{-1} x\to 0$ due to the continuity of the scalar multiplication.
Since~$U$ is a neighborhood of~$0$,
$n^{-1} x$ falls inside~$U$ when~$n$ is sufficiently large, which implies~$x\in n U$.
\end{proof}
\begin{theorem}[{\cite[Theorem~11.6.7]{Narici_Beckenstein_2010}}]
If~$X$ is a topological vector space, then~$X$ is a Baire space if and only if it is not meager.
\end{theorem}
\begin{proof}
If~$X$ is a Baire space, then it is not meager as an open subset of itself. If~$X$ is not a Baire
space, then there exists a nonempty open set~$U$ that is meager. Take~$x\in U$ and set~$V=U-x$.
Then~$V$ is a meager neighborhood of~$0$. Thus~$X=\bigcup_{n=1}^\infty (nV)$ is meager.
\end{proof}
\section{Examples}
The application of Baire's category theorem often takes the following form. Let~$X$ be a Baire
space, and~$\{C_n\}$ is a sequence of closed sets in~$X$.
\begin{enumerate}
\item If each~$C_n$ has no interior, then~$\bigcup_{n=1}^\infty C_n$ cannot be~$X$; indeed, it
has no interior, and its complement is dense in~$X$.
\item If~$\bigcup_{n=1}^\infty C_n$ has nonempty interior~(for example, it equals~$X$), then at least
one~$C_n$ has nonempty interior.
\end{enumerate}
\begin{proposition}
\label{prop:banach}
An infinite dimensional Banach space cannot have a countable Hamel basis.
\end{proposition}
\begin{proof}
Let~$X$ be an infinite dimensional Banach space. Assume that~$\{e_n\}$ is a countable Hamel basis of~$X$.
Then
\begin{equation}
\label{eq:union}
X = \bigcup_{n=1}^\infty \Span\{e_k \mathrel{:} 1\le k \le n\}.
\end{equation}
Since~$\Span\{e_k \mathrel{:} 1\le k \le n\}$ is a finite dimensional subspace of~$X$, it is
closed. Since~$X$ is infinite dimensional, its finite dimensional subspaces have empty interior.
Thus~\eqref{eq:union} is impossible as~$X$ is a Baire space.
\end{proof}
\begin{proposition}
\label{prop:nodiff}
Let~$X$ be the set of all real-valued continuous functions on $[0,1]$.
The set of nowhere differentiable functions on~$[0,1]$ is dense in~$X$ under the uniform norm.
\end{proposition}
\begin{proof}
Let~$Y$ be the set of all periodic continuous functions on~$\RR$ with period~$2$.
Define
\begin{align*}
R \;=\; & \{f \in Y \mathrel{:} f \text{ is not right differentiable at any } x \in [0,1]\},
\\
L \;=\; & \{f \in Y \mathrel{:} f \text{ is not left differentiable at any } x \in [0,1]\}.
\end{align*}
Then the restriction of any function in~$R\cap L$ to~$[0,1]$ is nowhere differentiable
on~$[0,1]$.
Therefore, it suffices to prove that~$R \cap L$ is dense in~$Y$ under the uniform norm.
To this end, we prove that~$R$ and~$L$ are both residual sets in~$Y$ under the uniform norm.
(N.B.: The purpose of taking~$Y$, $L$, and~$C$ is to deal with the boundaries~$0$ and~$1$.
For a function on~$[0,1]$, its differentiability at~$0$ is defined as the right
differentiability at~$0$, and similarly for~$1$.)
Take~$R$ as an example.
Define
\[
C_n \;=\; \{f \in Y \mathrel{:} \text{there exists an }x\in[0,1] \text{ such that } |f(x+h)
- f(x)| \le nh \text{ for all } h> 0\}.
\]
Then~$R \subset \bigcup_{n=1}^\infty C_n$ (for small~$h$, consider the right differentiability of~$f$; for
other~$h$, consider the boundedness of~$f$). We only need to that each~$C_n$ is closed and has empty
interior under the uniform norm.
Let~$\{f_k\}$ be a sequence in~$C_n$ that converges uniformly to~$f_0$.
Then there exists a
sequence~$\{x_k\} \subset[0,1]$ such that
\begin{equation}
\label{eq:fn}
|f_k(x_k+h) - f_k(x_k)| \le nh \quad \text{for all~} h>0.
\end{equation}
Assume without loss of generality that~$x_k\to x_0\in[0,1]$. By the uniform
convergence of~$\{f_k\}$ and the continuity of~$f_0$, for all~$h\ge 0$, we have
\[
|f_k(x_k + h)- f_0(x_0 + h)| \le |f_k(x_k + h) - f_0(x_k +h)| + |f_0(x_k + h) - f_0(x_0 +h)|
\to 0 \quad \text{as } k\to \infty.
\]
Hence~\eqref{eq:fn} implies that~$|f_0(x_0+h) - f(x_0)| \le nh$ for all~$h>0$. Thus~$f_0\in C_n$,
and~$C_n$ is closed.
$C_n$ has no interior, because in any neighborhood of any function~$f\in Y$, there exists a
continuous piecewise linear function whose slope of each linear piece is larger than~$n$ and
hence not in~$C_n$. The proof is complete.
\end{proof}
\begin{proposition}[Uniform boundedness priciple]
\label{prop:ub}
Let~$\TT$ be a set of bounded linear operators between normed linear spaces~$X$ and~$Y$.
If~$X$ is complete, and the set~$\{Tx \mathrel{:} T\in \TT\}$ is bounded in~$Y$ for all~$x\in X$,
then the set~$\TT$ is bounded in the operator norm.
\end{proposition}
\begin{proof}
Define
\[
X_n \;=\; \{x\in X \mathrel{:} \|Tx\| \le n \text{ for all } T \in \TT\}.
\]
Then~$X = \bigcup_{n=1}^\infty X_n$ by assumption. In addition, each~$X_n$ is closed by the
continuity of~$T \in \TT$. Since~$X$ is a Baire space, there exists an~$n$ such that~$X_n$
contains a ball~$\BB(x_0, r)$ with~$r>0$. For any~$T\in\TT$ and any~$x \in X$ with~$\|x\| = 1$, we have
\[
\|Tx\| \;=\; r^{-1}\|T(rx)\| \;\le\; r^{-1}\left[\|T(x_0 + rx)\| + \|T(x_0)\|\right] \;\le\; 2r^{-1} n.
\]
Hence~$\|T\|\le 2r^{-1}n$ for all~$T\in\TT$.
\end{proof}
\begin{proposition}
\label{prop:nx}
Let~$f\mathrel{:} (0,+\infty)\to \real$ be a continuous function. If~$\lim_{n\to \infty}f(nx) = 0$
for all~$x>0$, then~$\lim_{x\to +\infty} f(x) = 0$.
\end{proposition}
\begin{proof} We give two proofs.
1. Proof by Cantor's theorem. Assume that~$f(x)\nrightarrow 0$ when~$x\to +\infty$. Then there
exists a constant~$\epsilon > 0$ such that there exists~$x \ge M$ with~$|f(x)|>\epsilon$
for any~$M > 0$.
We will define
a strictly increasing sequence of integers~$\{n_k\}$ and
a decreasing nested sequence of closed intervals~$\{[a_k, b_k]\}$
such that~$b_k>a_k > 0$ and
\begin{equation}
|f(n_kx)| > \epsilon \quad \text{for all}\quad x \in [a_k, b_k] \quad \text{and}\quad k\ge 1.
\end{equation}
Once this is done, then there exists~$y\in\bigcap_{k=1}^\infty [a_k, b_k]$, and~$f(n_ky)> \epsilon$ for each~$k\ge 1$, contradicting the assumption.
We define the aforementioned~$\{[a_k,b_k]\}$ and~$\{n_k\}$ inductively.
Let~$n_1=1$. By the continuity of~$f$, there exists an interval~$[a_1, b_1]$ such
that~$b_1>a_1>0$ and~$f(n_1x)> \epsilon$ for all~$x\in [a_1, b_1]$. Assume that~$n_k$
and~$[a_k, b_k]$ has been defined for a~$k\ge 1$ so that~$b_k>a_k >0$. Note that there exists
$M>0$ such that
\begin{equation}
\label{eq:union}
[M, +\infty) \subset \mcup_{n> n_k} n[a_k, b_k].
\end{equation}
Take $a \ge M$ such that~$|f(a)|> \epsilon$. By the continuity of~$f$, there exists
$b>a$ such that~$|f(x)|>\epsilon$ for all~$x\in[a, b]$. According to~\eqref{eq:union},
there exists $n_{k+1} > n_k$ such that~$[a, b] \subset n_{k+1}[a_k, b_k]$.
Let~$a_{k+1} = a/n_{k+1}$ and~$b_{k+1} = b/n_{k+1}$. Then~$b_{k+1}>a_{k+1}>0$, $[a_{k+1},
b_{k+1}]\subset[a_k, b_k]$, and~$f(n_{k+1}x) > \epsilon$ for all~$x\in [a_{k+1}, b_{k+1}]$.
This finishes the induction and completes the proof.
2. Proof by Baire's Category Theorem. Let~$\epsilon$ be a positive constant. Since~$f(nx)\to 0$
for all~$x>0$, we have
\begin{equation}
\mcup_{N=1}^\infty \mcap_{n=N}^\infty\left\{ x >0 \mathrel{:} |f(nx)| \le \epsilon \right\}
\;=\; (0,+\infty).
\end{equation}
By the continuity of~$f$, $\bigcap_{n=N}^\infty \{x> 0 \mathrel{:} |f(nx)\le \epsilon|\}$ is closed for
each~$N \ge 1$.
As~$\real$ is a Baire space, $(0,+\infty)$ is not meager. Thus there exists~$N$ and an open
interval~$(a, b)$ such that
\begin{equation}
(a, b) \subset \mcap_{n=N}^\infty\left\{ x >0 \mathrel{:} |f(nx)| \le \epsilon \right\}.
\end{equation}
Therefore
\begin{equation}
\label{eq:abe}
n(a, b) \subset \left\{ x >0 \mathrel{:} |f(x)| \le \epsilon \right\}
\quad \text{ for each } \quad n\ge N.
\end{equation}
Note that there exists~$M >0$ such that
\begin{equation}
\label{eq:abm}
[M, \infty) \subset \mcup_{n=N}^\infty n(a,b).
\end{equation}
Combining~\eqref{eq:abe}--\eqref{eq:abm}, we have
\begin{equation}
[M, \infty) \subset \left\{ x >0 \mathrel{:} |f(x)| \le \epsilon \right\},
\end{equation}
which completes the proof.
\end{proof}
Proposition~\ref{prop:nx} can be strengthened to the following one, which can also be proved by
Baire's Category Theorem.
\begin{proposition}
Let~$f\mathrel{:} (0,+\infty)\to \real$ be a continuous function. If~$\lim_{n\to \infty}f(nx)$
exists for all~$x>0$, then~$\lim_{x\to +\infty} f(x)$ exists.
\end{proposition}
\small
\bibliography{\bibfile}
\bibliographystyle{plain}
\end{document}